[1]

肿瘤核素靶向治疗的研究进展[J].国际放射医学核医学杂志, 2008, 32(4): 206-208.

[2] Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90-labeled britumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma[J]. J Clin Oncol, 2002, 20(10):2453-2463.  doi: 10.1200/JCO.2002.11.076
[3] Alcindor T, Witzig TE. Radioimmunotherapy with yttrium-90 ibritumomab tiuxetan for patients with relapsed CD20+B-cell non-Hodgkin′s lymphoma[J]. Curr Treat Options Oncol, 2002, 3(4):275-282.  doi: 10.1007/s11864-002-0027-y
[4] Horning SJ, Younes A, Jain V, et al. Efficacy and safety of tositumomab and iodine-131 tositumomab(Bexxar)in B-cell lymphoma, progressive after rituximab[J]. J Clin Oncol, 2005, 23(4):712-719.  doi: 10.1200/JCO.2005.07.040
[5] Kaminski MS, Zelenetz AD, Press OW, et al. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin′s lymphomas[J]. J Clin Oncol, 2001, 19(19):3918-3928.  doi: 10.1200/JCO.2001.19.19.3918
[6] Chen SL, Yu LK, Jiang CY, et al. Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer[J]. J Clin Oncol, 2005, 23(7):1538-1547.  doi: 10.1200/JCO.2005.06.108
[7] Chen ZN, Mi L, Xu J, et al. Targeting radioimmunotherapy of hepatocellular carcinoma with Iodine(I-131)metuximab injection:Clinical phase I/II trials[J]. Int J Radiat Oncol Biol Phys, 2006, 65(2):435-444.  doi: 10.1016/j.ijrobp.2005.12.034
[8] Wu L, YangYF, Ge NJ, et al. Hepatic artery injection of 131I-labelled metuximab combined with chemoembolization for intermediate hepatocellular carcinoma:a prospective nonrandomized study[J]. Eur J Nucl Med Mol Imaging, 2012, 39(8):1306-1315.  doi: 10.1007/s00259-012-2145-5
[9] Liersch T, Meller J, Kulle B, et al. phase Ⅱ trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver:five-year safety and efficacy results[J]. J Clin Oncol, 2005, 23(27):6763-6770.  doi: 10.1200/JCO.2005.18.622
[10]

Han S, Jin G, Wang L, et al. The role of PAM4 in the management of pancreatic cancer: diagnosis, radioimmunodetection, and radioimmunotherapy[J/OL]. J Immunol Res, 2014, 2014: 268479[2014-12-10]. http://www. ncbi. nlm. nih. gov/pmc/articles/PMC4003775.

[11] 冯春玲.放射免疫治疗中载体的研究进展[J].国际放射医学核医学杂志, 2007, 31(2):77-79.  doi: 10.3760/cma.j.issn.1673-4114.2007.02.005
[12] Sahoo SK, Parveen S, Panda JJ. The present and future of nanotechnology in human health care[J]. Nanomedicine, 2007, 3(1):20-31.
[13] Gobin AM, Lee MH, Halas NJ, et al. Nearinfrared resonant nanoshells for combined opticalimaging and photothermal cancer therapy[J]. Nano Lett, 2007, 7(7):1929-1934.  doi: 10.1021/nl070610y
[14] Hong H, Zhang Y, Sun JT, et al. Molecular imaging and therapy of cancer with radiolabeled nanoparticles[J]. Nano Today, 2009, 4(5):399-413.
[15] Alberti C. From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy[J]. Eur Rev Med Pharmacol Sci, 2012, 16(14):1925-1933.
[16] Baum RP, Kulkarni HR. THERANOSTICS:from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy-the bad Berka experience[J]. Theranostics, 2012, 2(5):437-447.  doi: 10.7150/thno.3645
[17] Cremonesi M, FerrariM, Bodei L, et al. Dosimetry in peptide radionuclide receptor therapy:a review[J]. J Nucl Med, 2006, 47(9):1467-1475.
[18] Reubi JC, Schär JC, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use[J]. Eur J Nucl Med, 2000, 27(3):273-282.
[19] Waldherr C, Pless M, Maecke HR, et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq(90)Y-DOTATOC[J]. J Nucl Med, 2002, 43(5):610-616.
[20] Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog[177Lu-DOTA0, Tyr3]octreotate:toxicity, efficacy, and survival[J]. J Clin Oncol, 2008, 26(13):2124–2130.  doi: 10.1200/JCO.2007.15.2553
[21] Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatinanalogue[90Y-DOTA]-TOC in metastasized neuroendocrine cancers[J]. J Clin Oncol, 2011, 29(17):2416-2423.  doi: 10.1200/JCO.2010.33.7873
[22] Jurcic JG, Larson SM, Sgouros G, et al. Targeted alpha particle immunotherapy for myeloidleukemia[J]. Blood, 2002, 100(4):1233-1239.  doi: 10.1182/blood.V100.4.1233.h81602001233_1233_1239
[23] Nilsson S, Franzén L, Parker C, et al. Bone-targeted radium-223 in symptomatic, hormonerefractoryprostate cancer:a randomised, multicentre, placebo-controlled phase Ⅱ study[J]. Lancet Oncol, 2007, 8(7):587-594.  doi: 10.1016/S1470-2045(07)70147-X
[24] Zalutsky MR, Reardon DA, Akabani G, et al. Clinical experience with alpha-particle emitting 211At:treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6[J]. J Nucl Med, 2008, 49(1):30-38.
[25] Nayak T, Norenberg J, Anderson T, et al. A comparison of high- versus low-linear energy transfer somatostatin receptortargeted radionuclide therapy in vitro[J]. Can Biother Radio, 2005, 20(1):52-57.
[26] Nayak TK, Norenberg JP, Anderson TL, et al. Somatostatin-receptor-targeted alpha-emitting Bi-213 is therapeutically more effective than beta-emitting Lu-177 in human pancreatic adenocarcinoma cells[J]. Nucl Med Biol, 2007, 34(2):185-193.
[27] Kratochwil C, Giesel FL, Bruchertseifer F, et al. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation:a first-in-human experience[J]. Eur J Nucl Med Mol Imaging, 2014, 41(11):2106-2119.  doi: 10.1007/s00259-014-2857-9
[28] de Jong M, Breeman WA, Valkema R, et al. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs[J]. J Nucl Med, 2005, 46(Suppl 1):13S-17S.
[29] Kunikowska J, Królicki L, Hubalewska-Dydejczyk A, et al. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE:which is a better therapy option?[J]. Eur J Nucl Med Mol Imaging, 2011, 38(10):1788-1797.  doi: 10.1007/s00259-011-1833-x
[30] Villard L, Romer A, Marincek N, et al. Cohort study of somatostatin-based radiopeptide therapy with[(90)Y-DOTA]-TOC versus[(90)Y-DOTA]-TOC plus[(177)Lu-DOTA]-TOC in neuroendocrine cancers[J]. J Clin Oncol, 2012, 30(10):1100-1106.  doi: 10.1200/JCO.2011.37.2151
[31] Sawada N, Ishikawa T, Sekiguchi F, et al. X-ray irradiation induces thymidine phosphorylase and enhances the efficacy of capecitabine(Xeloda)in human cancer xenografts[J]. Clin Cancer Res, 1999, 5(10):2948-2953.
[32] Rich TA, Shepard RC, Mosley ST. Four decades of continuing innovation with fluorouracil:current and future approaches to fluorouracil chemoradiation therapy[J]. J Clin Oncol, 2004, 22(11):2214-2232.  doi: 10.1200/JCO.2004.08.009
[33] van Essen M, Krenning EP, Kam BL, et al. Report on short-term side effects of treatments with 177Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours[J]. Eur J Nucl Med Mol Imaging, 2008, 35(4):743-748.  doi: 10.1007/s00259-007-0688-7
[34] Claringbold PG, Brayshaw PA, Price RA, et al. phase Ⅱ study of radiopeptide 177Lu-octreotate and capecitabine therapy of progressive disseminated neuroendocrine tumours[J]. Eur J Nucl Med Mol Imaging, 2011, 38(2):302-311.  doi: 10.1007/s00259-010-1631-x
[35] Nayak TK, Atcher RW, Prossnitz ER, et al. Enhancement of somatostatin-receptor-targeted(177)Lu-[DOTA(0)-Tyr(3)]-octreotide therapy by gemcitabine pretreatment-mediated receptor uptake, up-regulation and cell cycle modulation[J]. Nucl Med Biol, 2008, 35(6):673-678.
[36] Kaemmerer D, Prasad V, Daffner W, et al. Neoadjuvant peptide receptor radionuclide therapy for an inoperable neuroendocrine pancreatic tumor[J]. World J Gastroenterol, 2009, 15(46):5867-5870.  doi: 10.3748/wjg.15.5867
[37] Stoeltzing O, Loss M, Huber E, et al. Staged surgery with neoadjuvant(90)Y-DOTATOC therapy for down-sizing synchronous bilobular hepatic metastases from a neuroendocrine pancreatic tumor[J]. Langenbecks Arch Surg, 2010, 395(2):185-192.  doi: 10.1007/s00423-009-0520-x
[38] Breeman WA, Mearadji A, Capello A, et al. Anti-tumor effect and increased survival after treatment with[177Lu-DOTA0, Tyr3]octreotate in a rat liver micrometastases model[J]. Int J Cancer, 2003, 104(3):376-379.
[39] Ginj M, Zhang H, Waser B, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors[J]. ProcNatl Acad Sci USA, 2006, 103(44):16436-16441.  doi: 10.1073/pnas.0607761103
[40] Cescato R, Waser B, Fani M, et al. Evaluation of 177Lu-DOTA-sst2 antagonist versus 177Lu-DOTA-sst2 agonist binding in human cancers in vitro[J]. J Nucl Med, 2011, 52(12):1886-1890.  doi: 10.2967/jnumed.111.095778
[41] Wild D, Fani M, Behe M, et al. First clinical evidence that imaging with somatostatinreceptor antagonists is feasible[J]. J Nucl Med, 2011, 52(9):1412-1417.  doi: 10.2967/jnumed.111.088922
[42] Wild D, Fani M, Fischer R, et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy:a pilot study[J]. J Nucl Med, 2014, 55(8):1248-1252.  doi: 10.2967/jnumed.114.138834
[43] Zhu ZH, Miao WB, Li QW, et al. 99mTc-3PRGD2 for integrin receptor imaging of lung cancer:a multicenter study[J]. J Nucl Med, 2012, 53(5):716-722.