[1] Siegel RL, Miller KD, Jemal A.  Cancer statistics, 2017[J]. CA Cancer J Clin, 2017, 67(1): 7-30.   doi: 10.3322/caac.21387
[2] DeSantis CE, Lin CC, Mariotto AB, et al.  Cancer treatment and survivorship statistics, 2014[J]. CA Cancer J Clin, 2014, 64(4): 252-271.   doi: 10.3322/caac.21235
[3] Fagin JA, Wells SA Jr.  Biologic and clinical perspectives on thyroid cancer[J]. N Engl J Med, 2016, 375(23): 2307-.   doi: 10.1056/NEJMc1613118
[4] Landa I, Ibrahimpasic T, Boucai L, et al.  Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers[J]. J Clin Invest, 2016, 126(3): 1052-1066.   doi: 10.1172/JCI85271
[5] Klinge CM.  Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers[J]. Endocr Relat Cancer, 2018, 25(4): R259-282.   doi: 10.1530/ERC-17-0548
[6] Wang XM, Liu Y, Fan YX, et al.  LncRNA PTCSC3 affects drug resistance of anaplastic thyroid cancer through STAT3/INO80 pathway[J]. Cancer Biol Ther, 2018, 19(7): 590-597.   doi: 10.1080/15384047.2018.1449610
[7] Khalil AM, Guttman M, Huarte M, et al.  Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression[J]. Proc Natl Acad Sci USA, 2009, 106(28): 11667-11672.   doi: 10.1073/pnas.0904715106
[8] Xu S, Sui S, Zhang J, et al.  Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer[J]. Int J Clin Exp Pathol, 2015, 8(5): 4881-4891.
[9] Di Gesualdo F, Capaccioli S, Lulli M.  A pathophysiological view of the long non-coding RNA world[J]. Oncotarget, 2014, 5(22): 10976-10996.   doi: 10.18632/oncotarget.2770
[10] Li JH, Zhang SQ, Qiu XG, et al.  Long non-coding RNA NEAT1 promotes malignant progression of thyroid carcinoma by regulating miRNA-214[J]. Int J Oncol, 2017, 50(2): 708-716.   doi: 10.3892/ijo.2016.3803
[11] Salmena L1, Poliseno L, Tay Y, et al.  A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?[J]. Cell, 2011, 146(3): 353-358.   doi: 10.1016/j.cell.2011.07.014
[12] Zhang H, Cai Y, Zheng L, et al.  Long noncoding RNA NEAT1 regulate papillary thyroid cancer progression by modulating miR-129-5p/KLK7 expression[J]. J Cell Physiol, 2018, 233(10): 6638-6648.   doi: 10.1002/jcp.26425
[13] Sun W, Lan X, Zhang H, et al.  NEAT1_2 functions as a competing endogenous RNA to regulate ATAD2 expression by sponging microRNA-106b-5p in papillary thyroid cancer[J]. Cell Death Dis, 2018, 9(3): 380-.   doi: 10.1038/s41419-018-0418-z
[14]

Ma XY, Wang JH, Wang JL, et al. Malat1 as an evolutionarily conserved lncRNA, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage hematopoietic cells[J/OL]. BMC Genomics, 2015, 16(1): 676 [2019−04−06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559210/. DOI: 10.1186/s12864−015−1881−x.

[15] Huang JK, Ma L, Song WH, et al.  MALAT1 promotes the proliferation and invasion of thyroid cancer cells via regulating the expression of IQGAP1[J]. Biomed Pharmacother, 2016, 83: 1-7.   doi: 10.1016/j.biopha.2016.05.039
[16] Huang JK, Ma L, Song WH, et al.  LncRNA-MALAT1 Promotes Angiogenesis of Thyroid Cancer by Modulating Tumor-Associated Macrophage FGF2 Protein Secretion[J]. J Cell Biochem, 2017, 118(12): 4821-4830.   doi: 10.1002/jcb.26153
[17] Zhang R, Hardin H, Huang W, et al.  MALAT1 Long Non-coding RNA Expression in Thyroid Tissues: Analysis by In Situ Hybridization and Real-Time PCR[J]. Endocr Pathol, 2017, 28(1): 7-12.   doi: 10.1007/s12022-016-9453-4
[18] Arun G, Diermeier S, Akerman M, et al.  Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss[J]. Genes Dev, 2016, 30(1): 34-51.   doi: 10.1101/gad.270959.115
[19] Hirata H, Hinoda Y, Shahryari V, et al.  Long Noncoding RNA MALAT1 Promotes Aggressive Renal Cell Carcinoma through Ezh2 and Interacts with miR-205[J]. Cancer Res, 2015, 75(7): 1322-1331.   doi: 10.1158/0008-5472.CAN-14-2931
[20] Chu YH, Hardin H, Schneider DF, et al.  MicroRNA-21 and long non-coding RNA MALAT1 are overexpressed markers in medullary thyroid carcinoma[J]. Exp Mol Pathol, 2017, 103(2): 229-236.   doi: 10.1016/j.yexmp.2017.10.002
[21] Liu L, Yang J, Zhu X, et al.  Long noncoding RNA H19 competitively binds miR-17-5p to regulate YES1 expression in thyroid cancer[J]. FEBS J, 2016, 283(12): 2326-2339.   doi: 10.1111/febs.13741
[22] Liu N, Zhou Q, Qi YH, et al.  Effects of long non-coding RNA H19 and microRNA let7a expression on thyroid cancer prognosis[J]. Exp Mol Pathol, 2017, 103(1): 71-77.   doi: 10.1016/j.yexmp.2017.06.004
[23] Wang P, Liu G, Xu W, et al.  Long Noncoding RNA H19 Inhibits Cell Viability, Migration, and Invasion Via Downregulation of IRS-1 in Thyroid Cancer Cells[J]. Technol Cancer Res Treat, 2017, 16(6): 1102-1112.   doi: 10.1177/1533034617733904
[24] Lan X, Sun W, Dong W, et al.  Downregulation of long noncoding RNA H19 contributes to the proliferation and migration of papillary thyroid carcinoma[J]. Gene, 2018, 646: 98-105.   doi: 10.1016/j.gene.2017.12.051
[25] Flockhart RJ, Webster DE, Qu K, et al.  BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration[J]. Genome Res, 2012, 22(6): 1006-1014.   doi: 10.1101/gr.140061.112
[26] Wang Y, Guo Q, Zhao Y, et al.  BRAF-activated long non-coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma[J]. Oncol Lett, 2014, 8(5): 1947-1952.   doi: 10.3892/ol.2014.2487
[27] Wang Y, Gu J, Lin X, et al.  lncRNA BANCR promotes EMT in PTC via the Raf/MEK/ERK signaling pathway[J]. Oncol Lett, 2018, 15(4): 5865-5870.   doi: 10.3892/ol.2018.8017
[28] Zheng H, Wang M, Jiang L, et al.  BRAF-Activated Long Noncoding RNA Modulates Papillary Thyroid Carcinoma Cell Proliferation through Regulating Thyroid Stimulating Hormone Receptor[J]. Cancer Res Treat, 2016, 48(2): 698-707.   doi: 10.4143/crt.2015.118
[29] Liao T, Qu N, Shi RL, et al.  BRAF-activated LncRNA functions as a tumor suppressor in papillary thyroid cancer[J]. Oncotarget, 2017, 8(1): 238-247.   doi: 10.18632/oncotarget.10825
[30] Li T, Yang XD, Ye CX, et al.  Long noncoding RNA HIT000218960 promotes papillary thyroid cancer oncogenesis and tumor progression by upregulating the expression of high mobility group AT-hook 2 (HMGA2) gene[J]. Cell Cycle, 2017, 16(2): 224-231.   doi: 10.1080/15384101.2016.1261768
[31]

D'Angelo D, Esposito F, Fusco A. Epigenetic Mechanisms Leading to Overexpression of HMGA Proteins in Human Pituitary Adenomas[J/OL]. Front Med (Lausanne), 2015, 2: 39 [2019−04−06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469109/. DOI: 10.3389/fmed.2015.00039.

[32] Sun W, Lan X, Wang Z, et al.  Overexpression of long non-coding RNA NR_036575.1 contributes to the proliferation and migration of papillary thyroid cancer[J]. Med Oncol, 2016, 33(9): 102-.   doi: 10.1007/s12032-016-0816-y
[33] Yoon H, He H, Nagy R, et al.  Identification of a novel noncoding RNA gene, NAMA, that is downregulated in papillary thyroid carcinoma with BRAF mutation and associated with growth arrest[J]. Int J Cancer, 2007, 121(4): 767-775.   doi: 10.1002/ijc.22701
[34] Balik V, Srovnal J, Sulla I, et al.  MEG3: a novel long noncoding potentially tumour-suppressing RNA in meningiomas[J]. J Neurooncol, 2013, 112(1): 1-8.   doi: 10.1007/s11060-012-1038-6
[35] Wang C, Yan G, Zhang Y, et al.  Long non-coding RNA MEG3 suppresses migration and invasion of thyroid carcinoma by targeting of Rac1[J]. Neoplasma, 2015, 62(4): 541-549.   doi: 10.4149/neo_2015_065
[36] Pan W, Zhou L, Ge M, et al.  Whole exome sequencing identifies lncRNA GAS8-AS1 and LPAR4 as novel papillary thyroid carcinoma driver alternations[J]. Hum Mol Genet, 2016, 25(9): 1875-1884.   doi: 10.1093/hmg/ddw056
[37]

Zhang D, Liu X, Wei B, et al. Plasma lncRNA GAS8-AS1 as a Potential Biomarker of Papillary Thyroid Carcinoma in Chinese Patients[J/OL]. Int J Endocrinol, 2017, 2017: 2645904 [2019−04−06]. https://www.hindawi.com/journals/ije/2017/2645904. DOI: 10.1155/2017/2645904.

[38] Qin Y, Sun W, Zhang H, et al.  LncRNA GAS8-AS1 inhibits cell proliferation through ATG5-mediated autophagy in papillary thyroid cancer[J]. Endocrine, 2018, 59(3): 555-564.   doi: 10.1007/s12020-017-1520-1
[39]

Jendrzejewski J, Thomas A, Liyanarachchi S, et al. PTCSC3 Is Involved in Papillary Thyroid Carcinoma Development by Modulating S100A4 Gene Expression[J/OL]. J Clin Endocrinol Metab, 2015, 100(10): E1370−1377 [2019−04−06]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596031/. DOI: 10.1210/jc.2015−2247.

[40] Wang X, Lu X, Geng Z, et al.  LncRNA PTCSC3/miR-574-5p Governs Cell Proliferation and Migration of Papillary Thyroid Carcinoma via Wnt/β-Catenin Signaling[J]. J Cell Biochem, 2017, 118(12): 4745-4752.   doi: 10.1002/jcb.26142
[41] Lan X, Sun W, Zhang P, et al.  Downregulation of long noncoding RNA NONHSAT037832 in papillary thyroid carcinoma and its clinical significance[J]. Tumour Biol, 2016, 37(5): 6117-6123.   doi: 10.1007/s13277-015-4461-4
[42] Xia S, Wang C, Ni X, et al.  NONHSAT076754 aids ultrasonography in predicting lymph node metastasis and promotes migration and invasion of papillary thyroid cancer cells[J]. Oncotarget, 2017, 8(2): 2293-2306.   doi: 10.18632/oncotarget.13725
[43] Qiu ZL, Shen CT, Sun ZK, et al.  Circulating Long Non-Coding RNAs Act as Biomarkers for Predicting 131I Uptake and Mortality in Papillary Thyroid Cancer Patients with Lung Metastases[J]. Cell Physiol Biochem, 2016, 40(6): 1377-1390.   doi: 10.1159/000453190
[44]

Li Q, Li H, Zhang L, et al. Identification of novel long non-coding RNA biomarkers for prognosis prediction of papillary thyroid cancer[J/OL]. Oncotarget, 2017, 8(28): 46136−46144 [2018−04−06]. https://www.ncbi.nlm.nih.gov/pubmed/28545026. DOI: 10.18632/oncotarget.17556.