[1] Bray F, Ferlay J, Soerjomataram I, et al.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.   doi: 10.3322/caac.21492
[2] Huang RJ, Epplein M, Hamashima C, et al.  An approach to the primary and secondary prevention of gastric cancer in the United States[J]. Clin Gastroenterol Hepatol, 2022, 20(10): 2218-2228.e2.   doi: 10.1016/j.cgh.2021.09.039
[3]

Farghaly H, Alshareef M, Alqarni A, et al. Dual time point [18F]Flurodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) with water gastric distension in differentiation between malignant and benign gastric lesions[J/OL]. Eur J Radiol Open, 2020, 7: 100268[2022-11-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490534/. DOI: 10.1016/j.ejro.2020.100268.

[4] Seko-Nitta A, Nagatani Y, Murakami Y, et al.  18F-fluorodeoxyglucose uptake in advanced gastric cancer correlates with histopathological subtypes and volume of tumor stroma[J]. Eur J Radiol, 2021, 145: 110048-.   doi: 10.1016/j.ejrad.2021.110048
[5] Minamimoto R, Senda M, Jinnouchi S, et al.  Performance profile of a FDG-PET cancer screening program for detecting gastric cancer: results from a nationwide Japanese survey[J]. Jpn J Radiol, 2014, 32(5): 253-259.   doi: 10.1007/s11604-014-0294-0
[6] Shimada H, Noie T, Ohashi M, et al.  Clinical significance of serum tumor markers for gastric cancer: a systematic review of literature by the Task Force of the Japanese Gastric Cancer Association[J]. Gastric Cancer, 2014, 17(1): 26-33.   doi: 10.1007/s10120-013-0259-5
[7] Li L, Bading J, Yazaki PJ, et al.  A versatile bifunctional chelate for radiolabeling humanized anti-CEA antibody with In-111 and Cu-64 at either thiol or amino groups: PET imaging of CEA-positive tumors with whole antibodies[J]. Bioconjug Chem, 2008, 19(1): 89-96.   doi: 10.1021/bc700161p
[8]

Nittka S, Krueger MA, Shively JE, et al. Radioimmunoimaging of liver metastases with PET using a 64Cu-labeled CEA antibody in transgenic mice[J/OL]. PLoS One, 2014, 9(9): e106921 [2022-11-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165898. DOI: 10.1371/journal.pone.0106921.

[9] Lwin TM, Minnix M, Li L, et al.  Multimodality PET and near-infrared fluorescence intraoperative imaging of CEA-positive colorectal cancer[J]. Mol Imaging Biol, 2023, 25(4): 727-734.   doi: 10.1007/s11307-023-01831-8
[10] Sundaresan G, Yazaki PJ, Shively JE, et al.  124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice[J]. J Nucl Med, 2003, 44(12): 1962-1969.
[11] Lütje S, Franssen GM, Sharkey RM, et al.  Anti-CEA antibody fragments labeled with [18F]AlF for PET imaging of CEA-expressing tumors[J]. Bioconjug Chem, 2014, 25(2): 335-341.   doi: 10.1021/bc4004926
[12] Rios X, Compte M, Gómez-Vallejo V, et al.  Immuno-PET imaging and pharmacokinetics of an anti-CEA scFv-based trimerbody and its monomeric counterpart in human gastric carcinoma-bearing mice[J]. Mol Pharm, 2019, 16(3): 1025-1035.   doi: 10.1021/acs.molpharmaceut.8b01006
[13] Wong P, Li L, Chea J, et al.  Antibody targeted PET imaging of 64Cu-DOTA-anti-CEA PEGylated lipid nanodiscs in CEA positive tumors[J]. Bioconjug Chem, 2020, 31(3): 743-753.   doi: 10.1021/acs.bioconjchem.9b00854
[14]

Alrhmoun S, Sennikov S. The role of tumor-associated antigen HER2/neu in tumor development and the different approaches for using it in treatment: many choices and future directions[J/OL]. Cancers, 2022, 14(24): 6173[2022-11-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776683/. DOI: 10.3390/cancers14246173.

[15] Van Cutsem E, Bang YJ, Feng-Yi F, et al.  HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer[J]. Gastric Cancer, 2015, 18(3): 476-484.   doi: 10.1007/s10120-014-0402-y
[16] Shitara K, Baba E, Fujitani K, et al.  Discovery and development of trastuzumab deruxtecan and safety management for patients with HER2-positive gastric cancer[J]. Gastric Cancer, 2021, 24(4): 780-789.   doi: 10.1007/s10120-021-01196-3
[17] Tang Y, Wang J, Scollard DA, et al.  Imaging of HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice using 111In-trastuzumab (Herceptin) Fab fragments[J]. Nucl Med Biol, 2005, 32(1): 51-58.   doi: 10.1016/j.nucmedbio.2004.08.003
[18] Tang Y, Scollard D, Chen P, et al.  Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using [99mTc]-HYNIC-trastuzumab (Herceptin) Fab fragments[J]. Nucl Med Commun, 2005, 26(5): 427-432.   doi: 10.1097/00006231-200505000-00006
[19] Dijkers ECF, Kosterink JGW, Rademaker AP, et al.  Development and characterization of clinical-grade 89Zr-Trastuzumab for HER2/neu immunoPET imaging[J]. J Nucl Med, 2009, 50(6): 974-981.   doi: 10.2967/jnumed.108.060392
[20] Niu G, Li ZB, Cao QZ, et al.  Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with 64Cu-DOTA-Trastuzumab[J]. Eur J Nucl Med Mol Imaging, 2009, 36(9): 1510-1519.   doi: 10.1007/s00259-009-1158-1
[21] Orlova A, Wållberg H, Stone-Elander S, et al.  On the selection of a tracer for PET imaging of HER2-expressing tumors: direct comparison of a 124I-labeled affibody molecule and trastuzumab in a murine xenograft model[J]. J Nucl Med, 2009, 50(3): 417-425.   doi: 10.2967/jnumed.108.057919
[22] Janjigian YY, Viola-Villegas N, Holland JP, et al.  Monitoring afatinib treatment in HER2-positive gastric cancer with 18F-FDG and 89Zr-Trastuzumab PET[J]. J Nucl Med, 2013, 54(6): 936-943.   doi: 10.2967/jnumed.112.110239
[23] O'Donoghue JA, Lewis JS, Pandit-Taskar N, et al.  Pharmacokinetics, biodistribution, and radiation dosimetry for 89Zr-Trastuzumab in patients with esophagogastric cancer[J]. J Nucl Med, 2018, 59(1): 161-166.   doi: 10.2967/jnumed.117.194555
[24] Guo XY, Zhu H, Zhou NN, et al.  Noninvasive detection of HER2 expression in gastric cancer by 64Cu-NOTA-Trastuzumab in PDX mouse model and in patients[J]. Mol Pharm, 2018, 15(11): 5174-5182.   doi: 10.1021/acs.molpharmaceut.8b00673
[25] Guo XY, Zhou NN, Chen ZH, et al.  Construction of 124I-Trastuzumab for noninvasive PET imaging of HER2 expression: from patient-derived xenograft models to gastric cancer patients[J]. Gastric Cancer, 2020, 23(4): 614-626.   doi: 10.1007/s10120-019-01035-6
[26] Furuse M, Sasaki H, Tsukita S.  Manner of interaction of heterogeneous claudin species within and between tight junction strands[J]. J Cell Biol, 1999, 147(4): 891-903.   doi: 10.1083/jcb.147.4.891
[27]

Kubota Y, Kawazoe A, Mishima S, et al. Comprehensive clinical and molecular characterization of claudin 18.2 expression in advanced gastric or gastroesophageal junction cancer[J/OL]. ESMO Open, 2023, 8(1): 100762[2022-11-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024138/. DOI: 10.1016/j.esmoop.2022.100762.

[28] Iwaya M, Hayashi H, Nakajima T, et al.  Colitis-associated colorectal adenocarcinomas frequently express claudin 18 isoform 2: implications for claudin 18.2 monoclonal antibody therapy[J]. Histopathology, 2021, 79(2): 227-237.   doi: 10.1111/his.14358
[29]

Ungureanu BS, Lungulescu CV, Pirici D, et al. Clinicopathologic relevance of Claudin 18.2 expression in gastric cancer: a meta-analysis[J]. Front Oncol, 2021, 11: 643872[2022-11-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969651/. DOI: 10.3389/fonc.2021.643872.

[30] Kyuno D, Takasawa A, Takasawa K, et al.  Claudin-18.2 as a therapeutic target in cancers: cumulative findings from basic research and clinical trials[J]. Tissue Barriers, 2022, 10(1): 1967080-.   doi: 10.1080/21688370.2021.1967080
[31] Hu GL, Zhu WJ, Liu Y, et al.  Development and comparison of three 89Zr-labeled anti-CLDN18.2 antibodies to noninvasively evaluate CLDN18.2 expression in gastric cancer: a preclinical study[J]. Eur J Nucl Med Mol Imaging, 2022, 49(8): 2634-2644.   doi: 10.1007/s00259-022-05739-3
[32] Zhao CK, Rong ZN, Ding J, et al.  Targeting claudin 18.2 using a highly specific antibody enables cancer diagnosis and guided surgery[J]. Mol Pharm, 2022, 19(10): 3530-3541.   doi: 10.1021/acs.molpharmaceut.1c00947
[33] Chen Y, Hou XG, Li DP, et al.  Development of a CLDN18.2-targeting immuno-PET probe for non-invasive imaging in gastrointestinal tumors[J]. J Pharm Anal, 2023, 13(4): 367-375.   doi: 10.1016/j.jpha.2023.02.011
[34] Wang SJ, Qi CS, Ding J, et al.  First-in-human CLDN18.2 functional diagnostic pet imaging of digestive system neoplasms enables whole-body target mapping and lesion detection[J]. Eur J Nucl Med Mol Imaging, 2023, 50(9): 2802-2817.   doi: 10.1007/s00259-023-06234-z
[35] Yang X, Liao HY, Zhang HH.  Roles of MET in human cancer[J]. Clin Chim Acta, 2022, 525: 69-83.   doi: 10.1016/j.cca.2021.12.017
[36]

Van Herpe F, Van Cutsem E. The role of c-MET in gastric cancer-a review of the literature[J/OL]. Cancers, 2023, 15(7): 1976[2022-11-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093530/. DOI: 10.3390/cancers15071976.

[37] Perk LR, Stigter-van Walsum M, Visser GWM, et al.  Quantitative PET imaging of Met-expressing human cancer xenografts with 89Zr-labelled monoclonal antibody DN30[J]. Eur J Nucl Med Mol Imaging, 2008, 35(10): 1857-1867.   doi: 10.1007/s00259-008-0774-5
[38] Jagoda EM, Lang LX, Bhadrasetty V, et al.  Immuno-PET of the hepatocyte growth factor receptor Met using the 1-armed antibody onartuzumab[J]. J Nucl Med, 2012, 53(10): 1592-1600.   doi: 10.2967/jnumed.111.102293
[39] Klingler S, Fay R, Holland JP.  Light-induced radiosynthesis of 89Zr-DFO-Azepin-Onartuzumab for imaging the hepatocyte growth factor receptor[J]. J Nucl Med, 2020, 61(7): 1072-1078.   doi: 10.2967/jnumed.119.237180
[40] Price EW, Carnazza KE, Carlin SD, et al.  89Zr-DFO-AMG102 immuno-PET to determine local hepatocyte growth factor protein levels in tumors for enhanced patient selection[J]. J Nucl Med, 2017, 58(9): 1386-1394.   doi: 10.2967/jnumed.116.187310
[41]

Pawluczuk E, Łukaszewicz-Zając M, Mroczko B. The comprehensive analysis of specific proteins as novel biomarkers involved in the diagnosis and progression of gastric cancer[J/OL]. Int J Mol Sci, 2023, 24(10): 8833[2022-11-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218496/. DOI: 10.3390/ijms24108833.

[42]

Zhu H, Zhao CK, Liu F, et al. Radiolabeling and evaluation of 64Cu-DOTA-F56 peptide targeting vascular endothelial growth factor receptor 1 in the molecular imaging of gastric cancer[J/OL]. Am J Cancer Res, 2015, 5(11): 3301−3310[2022-11-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697678/.

[43]

Hu K, Shang JJ, Xie L, et al. PET imaging of VEGFR with a novel 64Cu-Labeled peptide[J/OL]. ACS Omega, 2020, 5(15): 8508−8514[2022-11-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178340/. DOI: 10.1021/acsomega.9b03953.

[44]

Lorenzen S, Schwarz A, Pauligk C, et al. Ramucirumab plus irinotecan/leucovorin/5-FU versus ramucirumab plus paclitaxel in patients with advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction, who failed one prior line of palliative chemotherapy: the phase Ⅱ/Ⅲ RAMIRIS study (AIO-STO-0415)[J/OL]. BMC Cancer, 2023, 23(1): 561[2022-11-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278289/. DOI: 10.1186/s12885-023-11004-z.

[45] Amrane K, Querellou S, Schick U, et al.  Complete metabolic response assessed by FDG PET/CT to paclitaxel-ramucirumab in patients with metastatic gastroesophageal junction cancer[J]. Clin Nucl Med, 2020, 45(2): 127-128.   doi: 10.1097/RLU.0000000000002882
[46] Luo HM, England CG, Graves SA, et al.  PET imaging of VEGFR-2 expression in lung cancer with 64Cu-labeled ramucirumab[J]. J Nucl Med, 2016, 57(2): 285-290.   doi: 10.2967/jnumed.115.166462
[47] Novy Z, Janousek J, Barta P, et al.  Preclinical evaluation of anti-VEGFR2 monoclonal antibody ramucirumab labelled with zirconium-89 for tumour imaging[J]. J Labelled Comp Radiopharm, 2021, 64(7): 262-270.   doi: 10.1002/jlcr.3909