[1] Riches LC, Lynch AM, Gooderham NJ. Early events in the mammalian response to DNA double-strand breaks[J]. Mutagenesis, 2008, 23(5):331-339.  doi: 10.1093/mutage/gen039
[2] 田梅, 潘艳, 刘建香, 等. γ射线诱导人淋巴细胞损伤及磷酸化组蛋白H2AX和ATM表达[J].中华放射医学与防护杂志, 2011, 31(2):126-129.
Tian M, Pan Y, Liu JX, et al. Human lymphocyte damage and phosphorylation of H2AX and ATM induced by γ-rays[J]. Chin J Radiol Med Prot, 2011, 31(2):126-129.
[3]

Horn S, Barnard S, Rothkamm K. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure[J/OL]. PLoS One, 2011, 6(9): 1-8[2017-12-19]. http://www.plosone.org. DOI: 10.1371/journal.pone.0025113.

[4] Roch-Lefevre S, Mandina T, Voisin P, et al. Quantification of gamma-H2AX foci in human lymphocytes:a method for biological dosimetry after ionizing radiation exposure[J]. Radiat Res, 2010, 174(2):185-194. DOI:10.1667/RR1775.1.
[5] 潘艳, 高刚, 刘澜涛, 等.钴-60伽玛射线诱导淋巴细胞γ H2AX表达的研究[J].辐射研究与辐射工艺学报杂志, 2014, 32(2):9-12.
Pan Y, Gao G, Liu LT, Study on γH2AX expression of human lymphocytes induced by 60Co gamma-rays[J]. J Radiat Res Radiat Process, 2014, 32(2):9-12.
[6]

Wang J, He L, Fan D, et al. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats[J/OL]. Sci Rep, 6: 30018[2017-12-19]. http://www.nature.com/articles/srep30018. DOI: 10.1038/srep30018.

[7] Zhang J, He Y, Shen X, et al. γ-H2AX responds to DNA damage induced by long-term exposure to combined low-dose-rate neutron and γ-ray radiation[J]. Mutat Res, 2016, 795(1):36-40. DOI:10.1016/j.mrgentox.2015.11.004.
[8] Vandersickel V, Beukes P, Van Bockstaele B, et al. Induction and disappearance of γH2AX foci and formation of micronuclei after exposure of human lymphocytes to 60Co γ-rays and p(66)+ Be(40) neutrons[J]. Int J Radiat Biol, 2014, 90(2):159-68. DOI:10.3109/09553002.2014.860252.
[9] Solovjeva L, Firsanov D, Pleskach N, et al. Immunofluorescence analysis of γ-H2AX foci in mammalian fibroblasts at different phases of the cell cycle[J]. Methods Mol Biol, 2017, 1644:187-194. DOI:10.1007/978-1-4939-7187-9_17.
[10] Hopp N, Hagen J, Aggeler B, et al. Express γ-H2AX immunocyto chemical detection of DNA damage[J]. Methods Mol Biol, 2017, 1644:123-128. DOI:10.1007/978-1-4939-7187-9_10.
[11] Firsanov D, Solovjeva L, Lublinskaya O, et al. Rapid detection of γ-H2AX by flow cytometry in cultured mammalian cells[J]. Methods Mol Biol, 2017, 1644:129-138. DOI:10.1007/978-1-4939-7187-9-11.
[12] 李明娟, 王维维, 陈士伟, 等.辐射小鼠血细胞ATM、CDKN1A、DDB2和GADD45A基因表达分析[J].辐射研究与辐射工艺学报, 2011, 29(2):93-98.
Li MJ, Wang WW, Chen SW, et al. Analysis of the expression of ATM、CDKNIA、DDB2 and GADD45A genes in irradiated mouse blood cells[J]. J Radiat Res Radiat Process, 2011, 29(2):93-98.
[13] Ostling O, Johanson KJ. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells[J]. Biochem Biophys Res Commun, 1984, 123(1):291-298. DOI:10.1016/0006-291X(84)90411-X.
[14]

Singh N, Mccoy M, Tice R, et al. A simple technique for quantitation of low level of DNA damage in individual cells[J]. 1988, 175(1): 184-191. DOI: 10.1016/0014-4827(88)90265-0.

[15] Zheng W, He JL, Jin LF, et al.Assessment of human DNA repair(NER) capacity with DNA repair rate(DDR) by comet assay[J].Biomed Environ Sci, 2005, 18(2):117-123.
[16] 段志凯, 时爱丽, 刘建功, 等, 单细胞凝胶电泳技术用于估算大剂量电离辐射的初步探索[J].癌变·畸变·突变, 2011, 23(6):442-445. DOI:10.3969/j.issn.1004-616x.2011.06.009.
Duan ZK, Shi AL, Liu JG, et al. High dose radiation-induced DNA damage using single cell gel electrophoresis[J]. Carcinog Teratog Mutag, 2011, 23(6):442-445.  doi: 10.3969/j.issn.1004-616x.2011.06.009
[17] Sowmithra K, Shetty NJ, Jha SK, et al. Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay)[J]. Mut Res, 2015, 794:52-56. DOI:10.1016/j.mrgentox.2015.10.001.
[18] Sugihara T, Magae J, Wadhwa R, et al. Dose and dose-rate effects of low-dose ionizing radiation on activation of Trp53 in immortalized murine cells[J]. Radiat Res, 2004162(3):296-307.
[19] Manning G, Kabacik S, Finnon P, et al. High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood[J]. Int J Radiat Biol, 2013, 89(7):512-522. DOI:10.3109/09553002. 2013.769694.
[20] 何颖, 沈先荣, 钱甜甜, 等.低剂量γ射线对人淋巴母细胞CCNG1基因表达的影响[J].解放军医学杂志, 2015, 40(6):498-501. DOI:10.11855/j.issn.0577-7402.2015.06.16.
He Y, Shen XR, Qian TT. Effects of low-dose γ-ray on the expression of CCNG1 gene in human lymphoblasts[J]. Med J Chin PLA, 2015, 40(6):498-501.  doi: 10.11855/j.issn.0577-7402.2015.06.16
[21] Turtoi A, Brown I, Oskamp D, et al. Early gene expression in human lymphocytes after gamma-irradiation-a genetic pattern with potential for biodosimetry[J]. Int J Radiat Biol, 2008, 84(5):375-387. DOI:10.1080/09553000802029886.
[22] 金顺子, 武宁, 刘丽波, 等.辐射诱导细胞周期调控和DNA损伤反应相关基因表达变化的实验研究[J].辐射防护, 2010, 30(2):70-79.
Jin SZ, Wu N, Liu LB, et al. Experimental study on changes of gene expression related to radiation-induced cell cycle regulation and DNA damage response[J]. Radiat Prot, 2010, 30(2):70-79.
[23] 李洁清, 李坤, 封丽, 等. X射线照射AHH-1细胞基因表达转录谱变化研究[J].中国职业医学, 2013, 40(5):420-426.
Li JQ, Li K, Feng L, et al. Study on alterations of gene transcriptional profiles in AHH-1 cells by X-ray exposure[J]. China Occupat Med, 2013, 40(5):420-426.
[24] 刘建功, 党旭红, 张忠新, 等. 60Co γ射线对人离体外周血CDKN1A基因表达水平的影响[J].辐射防护通讯, 2015, 35(2):13-15.
Liu JG, Dang XH, Zhang ZX, et al. A study on gene expression of CDKN1A from human peripheral blood induced by 60Co γ-rays[J]. Radiat Prot Bulletin, 2015, 35(2):13-15.
[25] Yu M. Somatic mitochondrial DNA mutations in human cancers[J]. Adv Clin Chem, 2012, 57:99-138. DOI:10.1016/B978-0-12-394384-2.00004-8.
[26] Rahmani B, Azimi C, Omranipour R, et al. Mutation screening in the mitochondrial D-loop region of tumoral and non-tumoral breast cancer in iranian patients[J]. Acta Med Iran, 2012, 50(7):447-453.
[27] Yoshida T, Goto S, Kawakatsu M, et al. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation[J]. Free Radic Res, 2012, 46(2):147-153. DOI:10.3109/10715762.2011.645207.
[28] Wen Q, Hu Y, Ji F, et al. Mitochondrial, DNA alterations of peripheral lymphocytes in acute lymphoblastic leukemia patients undergoing total body irradiation therapy[J]. Radiat Oncol, 2011, 6:133. DOI:10.1186/1748-717X-6-133.
[29] 张忠新, 刘建功, 张淑贤, 等.电离辐射对人外周血线粒体编码基因mRNA表达的影响[J].癌变·畸变·突变, 2013, 25(1):22-25, 30.
Zhang ZX, Liu JG, Zhang SX, et al. Effects of radiation on mitochondrial gene expression in human peripheral blood cells[J]. Carcinog Teratog Mutag, 2013, 25(1):22-25, 30.
[30]

Girardi C, Pitta CD, Casara S, et al. Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity[J/OL]. PLoS One, 2012, 7(2): e31293[2017-12-19]. www.plosone.org. DOI: 10.1371/journal.pone.0031293.

[31] Beer L, Seemann R, Ristl R, et al. High dose ionizing radiation regulates micro RNA and gene expression changes in human peripheral blood mononuclear cells[J]. BMC Genomics, 2014, 15:814. DOI:10.1186/1471-2164-15-814.
[32] 李刚强, 朱瑞, 周海亚, 等. 60Co γ亚致死量辐射致小鼠外周血中microRNA表达改变的研究[J].中华灾害救援医学, 2015, 3(11):615-618.
Li GQ, Zhu R, Zhou HY, et al. Study on microRNA changes induced by sublethal dose of 60Co γ ray on mouse[J]. Chin J Dis Med, 2015, 3(11):615-618.
[33] 李刚强, 朱瑞, 周海亚, 等. 60Co γ辐射致小鼠血液中microRNA表达改变及意义[J].河南预防医学杂志, 2016, 27(6):401-405.
Li GQ, Zhu R, Zhou HY. MicroRNA changes induced by radiation in mouse[J]. Henan J Prev Med, 2016, 27(6):401-405.
[34] Sharma M, Moulder JE. The urine proteome as a radiation biodosimeter[J]. Adv Exp Med Biol, 2013, 990:87-100. DOI:10.1007/978-94-007-5896-4_5.
[35] Partridge MA, Chai Y, Zhou H. High-throughput antibody-based assays to identify and quantify radiation-responsive protein biomarkers[J]. Int J Radiat Biol, 2010, 86(4):321-328. DOI:10.3109/09553000903564034.
[36] Deperas-Kaminska M, Bajinskis A, Marczyk M, et al. Radiation-induced changes in levels of selected proteins in peripheral blood serum of breast cancer patients as a potential triage biodosimeter for large-scale radiological emergencies[J]. Health Physics, 2014, 107(6):555-563. DOI:10.1097/HP.0000000000000158.