[1] Chung JK, Lee YJ, Kim SK, et al. Comparison of[18F]fluorodeoxyglucose uptake with glucose transporter-1 expression and proliferation rate in human glioma and non-small-cell lung cancer[J]. Nucl Med Commun,2004, 25(1):11-17.
[2] Inoue T, Shibasaki T, Oriuchi N, et al. 18F alpha-methyl tyresine PET studies in patients with brain tumors[J]. J Nucl Med, 1999, 40(3):399-405.
[3] Laverman P, Boerman OC, Corstens FH, et al. Fluorinated amino acids for tumor imaging with positron emission tomography[J]. Eur J Nucl Med Mol Imaging, 2002, 29(5):681-690.
[4] Rau FC, Weber WA, Wester HJ, et al. O-(2-[18F]fluoroethyl)-L-tyrosine (FET):a tracer for differentiation of turnout from inflammation in murine lymph nodes[J]. EurJ Nucl Med, 2002, 29(8):1039-1046.
[5] Becherer A, Karanikas G, Szabo M, et al. Brain tumour imaging with PET:a comparison between[18F]fluorodopa and[11C]methionine[J].Eur J Nucl Med Mol Imaging, 2003, 30(11):1561-1567.
[6] Utriainen M, Metsahonkala L, Salmi TT, et al. Metabolic characterization of childhood brain tumors:comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography[J]. Cancer,2002, 95(6):1376-1386.
[7] Padma MV, Said S, Jacobs M, et al. Prediction of pathology and survival by FDG PET in gliomas[J]. J Neurooncol, 2003, 64(3):227-237.
[8] Chung JK, Kim YK, Kim SK, et al. Usefulnes of 11C-methionine PET in the evaluation of brain lesions that are hypo-or isometabolic on 18F-FDG PET[J]. Eur J Nucl Med Mol Imaging, 2002, 29(2):176-182.
[9] Narayanan TK, Said S, Mukherjee J, et al. A comparative study on the uptake and incorporation of radiolabeled methionine, choline and fluorodeoxyglucose in human astrocytoma[J]. Mol Imaging Biol,2002, 4(2):147-156.
[10] Kracht LW, Friese M, Herholz K, et al. Methyl-[11C]- 1-methionine uptake as measured by positron emission to mography correlates tomicrovessel density in patients with glioma[J]. Eur J Nucl Med Mol Imaging, 2003, 30(6):868-873.
[11] Chao ST, Suh JH, Raja S, et al. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrods in patients treated with stereotacitc radiosurgery[J], hat J Cancer(Radiat Oncol Invest), 2001, 96(3):191-197.
[12] Weber WA, Wester HJ, Grosu AL et al. O-(2-[18F] fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumors:initial results of a comparative study[J]. Eur J Nucl Med, 2000, 27(5):542-549.
[13] Langen KJ, Jarosch M, Mühlensiepen H, et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas[J]. Nucl Med Biol, 2003, 30(5):501-508.
[14] Pirotte B, Goldman S, Massager N, et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic hrain biopsy of gliomas[J]. J Nucl Med, 2004, 45(8):1293-1298.
[15] Levivier M, Massager N, Wikler D, et al. Use of stereotactic PET images in dosimetry planning of radiosurgery for brmn tumor:climcal experience and proposed classification[J]. J Nucl Med, 2004,45(7):1146-1154.
[16] Bělohhivek O, Simonová G, Kantorovà L,et al. Brain mtastasea after stereotactic radiosurgery using the Leksen gamma knife:can FDG PET help to differentiate radionecrosis from tumour progression?[J].EurJ Nucl Med Mol Imaging, 2003, 30(1):96-100.
[17] Braga FJHN, Flamen P, Van Calenbergn F. 11C-methionine (MET)and 18F-FDG PET for the evaluation of suspected recurrent brain tumous(SRBT)[J]. Eur J Nucl Med, 2000, 27(8):1145.
[18] Langleben DD, Segall GM. PET in differentiation of recurrent brain tumor from radiation injury[J]. J Nucl Med, 2000, 41(11):1861-1867.
[19] Kim S, Chung JK, Im SH, et al. 11C-methionine PET as a prognostic marker in patients with glioma:comparison with (18)F-FDG PET[J].Eur J Nucl Med Mol Imaging, 2005, 32(1):52-59.