[1]

Pellegrino NE, Guven A, Gray K, et al. The next frontier: translational development of ubiquitination, SUMOylation, and NEDDylation in cancer [J/OL]. Int J Mol Sci, 2022, 23(7): 3480[2023-08-29]. https://www.mdpi.com/1422-0067/23/7/3480. DOI: 10.3390/ijms23073480.

[2]

Buneeva O, Medvedev A. Atypical ubiquitination and Parkinson's disease [J/OL]. Int J Mol Sci, 2022, 23(7): 3705[2023-08-29]. https://www.mdpi.com/1422-0067/23/7/3705. DOI: 10.3390/ijms23073705.

[3]

Toma-Fukai S, Shimizu T. Structural diversity of ubiquitin E3 ligase [J/OL]. Molecules, 2021, 26(21): 6682[2023-08-29]. https://www.mdpi.com/1420-3049/26/21/6682. DOI: 10.3390/molecules26216682.

[4] Blaquiere N, Villemure E, Staben ST.  Medicinal chemistry of inhibiting RING-type E3 ubiquitin ligases[J]. J Med Chem, 2020, 63(15): 7957-7985.   doi: 10.1021/acs.jmedchem.9b01451
[5]

Licchesi JDF, Laman H, Ikeda F, et al. Editorial: E3 ubiquitin ligases: from structure to physiology [J/OL]. Front Physiol, 2020, 11: 621053[2023-08-29]. https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2020.621053/full. DOI: 10.3389/fphys.2020.621053.

[6] Tracz M, Bialek W.  Beyond K48 and K63: non-canonical protein ubiquitination[J]. Cell Mol Biol Lett, 2021, 26(1): 1-.   doi: 10.1186/s11658-020-00245-6
[7]

Liu H, Craig SEL, Molchanov V, et al. SUMOylation in skeletal development, homeostasis, and disease[J/OL]. Cells, 2022, 11(17): 2710[2023-08-29]. https://www.mdpi.com/2073-4409/11/17/2710. DOI: 10.3390/cells11172710.

[8] Tomanov K, Julian J, Ziba I, et al.  SUMO conjugation and SUMO chain formation by plant enzymes[J]. Methods Mol Biol, 2023, 2581: 83-92.   doi: 10.1007/978-1-0716-2784-6_7
[9]

Zhou W, Hu GL, He JL, et al. SENP1-Sirt3 signaling promotes α-ketoglutarate production during M2 macrophage polarization [J/OL]. Cell Rep, 2022, 39(2): 110660[2023-08-29]. https://www.sciencedirect.com/science/article/pii/S2211124722004120. DOI: 10.1016/j.celrep.2022.110660.

[10] Liu J, Wu ZS, Han D, et al.  Mesencephalic astrocyte-derived neurotrophic factor inhibits liver cancer through small ubiquitin-related modifier (SUMO)ylation-related suppression of NF-κB/snail signaling pathway and epithelial-mesenchymal transition[J]. Hepatology, 2020, 71(4): 1262-1278.   doi: 10.1002/hep.30917
[11] Xiao H, Zhou H, Zeng GF, et al.  SUMOylation targeting mitophagy in cardiovascular diseases[J]. J Mol Med(Berl), 2022, 100(11): 1511-1538.   doi: 10.1007/s00109-022-02258-4
[12]

Hotz P W, Müller S, Mendler L. SUMO-specific Isopeptidases tuning cardiac SUMOylation in health and disease [J/OL]. Front Mol Biosci, 2021, 8: 786136[2023-08-29]. https://www.frontiersin.org/articles/10.3389/fmolb.2021.786136/full. DOI: 10.3389/fmolb.2021.786136.

[13] Yu H, Kondo Y, Fujii K, et al.  Establishment of a method for investigating direct and indirect actions of Ionizing Radiation using scavenger-free plasmid DNA[J]. Radiat Res, 2022, 197(6): 594-604.   doi: 10.1667/rade-21-00057.1
[14] Park YJ, Kim TS, Kim EH, et al.  Ribosomal protein S3 is a novel negative regulator of non-homologous end joining repair of DNA double-strand breaks[J]. FASEB J, 2020, 34(6): 8102-8113.   doi: 10.1096/fj.201903245R
[15]

Menolfi D, Zha S. ATM, ATR and DNA-PKcs kinases-the lessons from the mouse models: inhibition ≠ deletion [J/OL]. Cell Biosci, 2020, 10: 8[2023-08-29]. https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-020-0376-x. DOI: 10.1186/s13578-020-0376-x.

[16]

Zhang CY, Guan YG, Zou JN, et al. Histone methyltransferase MLL1 drives renal tubular cell apoptosis by p53-dependent repression of E-cadherin during cisplatin-induced acute kidney injury [J/OL]. Cell Death Dis, 2022, 13(9): 770[2023-08-29]. https://www.nature.com/articles/s41419-022-05104-0. DOI: 10.1038/s41419-022-05104-0.

[17] Liu YZ, Xu QS, Deng F, et al.  HERC2 promotes inflammation-driven cancer stemness and immune evasion in hepatocellular carcinoma by activating STAT3 pathway[J]. J Exp Clin Cancer Res, 2023, 42(1): 38-.   doi: 10.1186/s13046-023-02609-0
[18] Hu Q, Botuyan MV, Zhao DB, et al.  Mechanisms of BRCA1-BARD1 nucleosome recognition and ubiquitylation[J]. Nature, 2021, 596(7872): 438-443.   doi: 10.1038/s41586-021-03716-8
[19] Burge RJ, Damianou A, Wilkinson AJ, et al.  Leishmania differentiation requires ubiquitin conjugation mediated by a UBC2-UEV1 E2 complex[J]. PLoS Pathog, 2020, 16(10): e1008784-.   doi: 10.1371/journal.ppat.1008784
[20]

Kelliher JL, West KL, Gong QG, et al. Histone H2A variants alpha1-extension helix directs RNF168-mediated ubiquitination [J/OL]. Nat Commun, 2020, 11(1): 2462[2023-08-29]. https://www.nature.com/articles/s41467-020-16307-4. DOI: 10.1038/s41467-020-16307-4.

[21] Hou PP, Yang KX, Jia PH, et al.  A novel selective autophagy receptor, CCDC50, delivers K63 polyubiquitination-activated RIG-I/MDA5 for degradation during viral infection[J]. Cell Res, 2021, 31(1): 62-79.   doi: 10.1038/s41422-020-0362-1
[22]

Zhu SH, Hou J, Gao HY, et al. SUMOylation of HNRNPA2B1 modulates RPA dynamics during unperturbed replication and genotoxic stress responses [J]. Mol Cell, 2023, 83(4): 539-555. e7. DOI:10.1016/j.molcel.2023.01.003.

[23]

Qin Y, Li Q, Liang WB, et al. TRIM28 SUMOylates and stabilizes NLRP3 to facilitate inflammasome activation [J/OL]. Nat Commun, 2021, 12(1): 4794[2023-08-29]. https://www.nature.com/articles/s41467-021-25033-4. DOI: 10.1038/s41467-021-25033-4.

[24] Scully R, Panday A, Elango R, et al.  DNA double-strand break repair-pathway choice in somatic mammalian cells[J]. Nat Rev Mol Cell Biol, 2019, 20(11): 698-714.   doi: 10.1038/s41580-019-0152-0
[25] Puustinen P, Keldsbo A, Corcelle-Termeau E, et al.  DNA-dependent protein kinase regulates lysosomal AMP-dependent protein kinase activation and autophagy[J]. Autophagy, 2020, 16(10): 1871-1888.   doi: 10.1080/15548627.2019.1710430
[26] Watanabe G, Lieber MR, Williams DR.  Structural analysis of the basal state of the Artemis: DNA-PKcs complex[J]. Nucleic Acids Res, 2022, 50(13): 7697-7720.   doi: 10.1093/nar/gkac564
[27]

Guo GJ, Gao M, Gao XC, et al. Reciprocal regulation of RIG-I and XRCC4 connects DNA repair with RIG-I immune signaling [J/OL]. Nat Commun, 2021, 12(1): 2187[2023-08-29]. https://www.nature.com/articles/s41467-021-22484-7. DOI: 10.1038/s41467-021-22484-7.

[28] Jiang QQ, Foglizzo M, Morozov YI, et al.  Autologous K63 deubiquitylation within the BRCA1-A complex licenses DNA damage recognition[J]. J Cell Biol, 2022, 221(9): e202111050-.   doi: 10.1083/jcb.202111050
[29] Fiesco-Roa MO, Giri N, Mcreynolds LJ, et al.  Genotype-phenotype associations in Fanconi anemia: a literature review[J]. Blood Rev, 2019, 37: 100589-.   doi: 10.1016/j.blre.2019.100589
[30] Zhang Y, Li J, Zhou Y, et al.  And-1 coordinates with the FANCM complex to regulate Fanconi anemia signaling and cisplatin resistance[J]. Cancer Res, 2022, 82(18): 3249-3262.   doi: 10.1158/0008-5472.Can-22-0769
[31] Li LD, Tan W, Deans AJ.  Structural insight into FANCI-FANCD2 monoubiquitination[J]. Essays Biochem, 2020, 64(5): 807-817.   doi: 10.1042/ebc20200001
[32]

Germoglio M, Valenti A, Gallo I, et al. In vivo analysis of FANCD2 recruitment at meiotic DNA breaks in Caenorhabditis elegans [J/OL]. Sci Rep, 2020, 10(1): 103[2023-08-29]. https://www.nature.com/articles/s41598-019-57096-1. DOI: 10.1038/s41598-019-57096-1.

[33] Wang JM, Chan B, Tong M, et al.  Prolyl isomerization of FAAP20 catalyzed by PIN1 regulates the Fanconi anemia pathway[J]. PLoS Genet, 2019, 15(2): e1007983-.   doi: 10.1371/journal.pgen.1007983
[34] Mullenders LHF.  Solar UV damage to cellular DNA: from mechanisms to biological effects[J]. Photochem Photobiol Sci, 2018, 17(12): 1842-1852.   doi: 10.1039/c8pp00182k
[35] Mu H, Geacintov NE, Broyde S, et al.  Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair[J]. DNA Repair (Amst), 2018, 71: 33-42.   doi: 10.1016/j.dnarep.2018.08.005
[36] Zhu QZ, Ding N, Wei SC, et al.  USP7-mediated deubiquitination differentially regulates CSB but not UVSSA upon UV radiation-induced DNA damage[J]. Cell Cycle, 2020, 19(1): 124-141.   doi: 10.1080/15384101.2019.1695996
[37]

Zhang Q, Yang LJ, Gao H, et al. APE1 promotes non-homologous end joining by initiating DNA double-strand break formation and decreasing ubiquitination of artemis following oxidative genotoxic stress [J/OL]. J Transl Med, 2023, 21(1): 183[2023-08-29]. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-023-04022-9. DOI: 10.1186/s12967-023-04022-9.

[38] Alemasova EE, Lavrik OI.  Poly(ADP-ribosyl)ation by: reaction mechanism and regulatory proteins[J]. Nucleic Acids Res, 2019, 47(8): 3811-3827.   doi: 10.1093/nar/gkz120
[39] Steinacher R, Barekati Z, Botev P, et al.  SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation[J]. Embo J, 2019, 38(1): e99242-.   doi: 10.15252/embj.201899242
[40] Wang DP, Wu W, Callen E, et al.  Active DNA demethylation promotes cell fate specification and the DNA damage response[J]. Science, 2022, 378(6623): 983-989.   doi: 10.1126/science.add9838
[41] Park J, Cho J, Song EJ.  Ubiquitin-proteasome system (UPS) as a target for anticancer treatment[J]. Arch Pharm Res, 2020, 43(11): 1144-1161.   doi: 10.1007/s12272-020-01281-8