[1]

Institute for Quality and Efficiency in Health Care. Positron emission tomography(PET) and PET/CT for recurrence diagnosis in high-grade malignant glioma(grades Ⅲ and Ⅳ): Executive summary of final report D06-01D, Version 1.0[EB/OL]. [2013-05-26]. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0033979.

[2] Götz L, Spehl TS, Weber WA, et al. PET and SPECT for radiation treatment planning. Q J Nucl Med Mol Imaging, 2012, 56(2): 163-172.
[3] 徐高峰, 白晓斌, 王茂德, 等.脑胶质瘤细胞糖酵解表型特征及对细胞增殖与凋亡的影响.南方医科大学学报, 2013, 33(3): 406-411.
[4] Dunet V, Rossier C, Buck A, et al. Performance of 18F-fluoro-ethyl-tyrosine(18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med, 2012, 53(2): 207-214.
[5] Li DL, Xu YK, Wang QS, et al. 11C-methionine and 18F-fluorodeoxyglucose positron emission tomography/CT in the evaluation of patients with suspected primary and residual/recurrent gliomas. Chin Med J (Engl), 2012, 125(1): 91-96.
[6] Tripathi M, Sharma R, D′Souza M, et al. Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med, 2009, 34(12): 878-883.
[7] Kruser TJ, Mehta MP, Robins HI. Pseudoprogression after glioma therapy: a comprehensive review. Expert Rev Neurother, 2013, 13(4): 389-403.
[8] Kracht LW, Miletic H, Busch S, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res, 2004, 10(21): 7163-7170.
[9] Kato T, Shinoda J, Nakayama N, et al. Metabolic assessment of gliomas using 11C-methionine, [18F]fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol, 2008, 29(6): 1176-1182.
[10] Crippa F, Alessi A, Serafini GL. PET with radiolabeled aminoacid. Q J Nucl Med Mol Imaging, 2012, 56(2): 151-162.
[11] Gulyás B, Halldin C. New PET radiopharmaceuticals beyond FDG for brain tumor imaging. Q J Nucl Med Mol Imaging, 2012, 56(2): 173-190.
[12]

Miyake K, Shinomiya A, Okada M, et al. Usefulness of FDG, MET and FLT-PET studies for the management of human gliomas[J/OL]. J Biomed Biotechnol, 2012, 2012[2013-05-26]. http://www.hindawi.com/journals/bmri/2012/205818.

[13] Chen W, Cloughesy T, Kamdar N, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med, 2005, 46(6): 945-952.
[14] Kunz M, Thon N, Eigenbrod S, et al. Hot spots in dynamic 18FET-PET delineate malignant tumor parts within suspected WHO grade Ⅱ gliomas. Neuro Oncol, 2011, 13(3): 307-316.
[15] Fueger BJ, Czernin J, Cloughesy T, et al. Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med, 2010, 51(10): 1532-1538.
[16] Chen W, Silverman DH, Delaloye S, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med, 2006, 47(6): 904-911.
[17] Chierichetti F, Pizzolato G. 18F-FDG-PET/CT. Q J Nucl Med Mol Imaging, 2012, 56(2): 138-150.
[18] Yang S, Zhang C, Zhu T, et al. Resection of gliomas using positron emission tomography/computed tomography neuronavigation. Neurol Med Chir(Tokyo), 2007, 47(9): 397-401, 402.
[19] Pirotte B, Goldman S, Massager N, et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med, 2004, 45(8): 1293-1298.
[20] Jacobs AH, Thomas A, Kracht LW, et al. 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med, 2005, 46(12): 1948-1958.
[21] Ceyssens S, Van Laere K, de Groot T, et al. [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol, 2006, 27(7): 1432-1437.
[22] Munck Af Rosenschöld P, Engelholm S, Ohlhues L, et al. Photon and proton therapy planning comparison for malignant glioma based on CT, FDG-PET, DTI-MRI and fiber tracking. Acta Oncol, 2011, 50(6): 777-783.
[23] Li FM, Nie Q, Wang RM, et al. 11C-CHO PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas. Nucl Med Biol, 2012, 39(3): 437-442.
[24]

Gramatzki D, Herrmann C, Happold C, et al. Glioma cell death induced by irradiation or alkylating agent chemotherapy is independent of the intrinsic ceramide pathway[J/OL]. PLoS One, 2013, 8(5): e63527[2013-05-26]. http://www.plosone.org/article/info%3Adoi%2F10. 1371%2Fjournal.pone.0063527.

[25] Enslow MS, Zollinger LV, Morton KA, et al. Comparison of 18F-fluorodeoxyglucose and 18F-fluorothymidine PET in differentiating radiation necrosis from recurrent glioma. Clin Nucl Med, 2012, 37(9): 854-861.
[26] Santra A, Kumar R, Sharma P, et al. F-18 FDG PET-CT in patients with recurrent glioma: comparison with contrast enhanced MRI. Eur J Radiol, 2012, 81(3): 508-513.
[27] Langleben DD, Segall GM. PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med, 2000, 41(11): 1861-1867.
[28] Terakawa Y, Tsuyuguchi N, Iwai Y, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med, 2008, 49(5): 694-699.
[29] Tripathi M, Sharma R, Varshney R, et al. Comparison of F-18 FDG and C-11 methionine PET/CT for the evaluation of recurrent primary brain tumors. Clin Nucl Med, 2012, 37(2): 158-163.
[30] Lam WW, Ng DC, Wong WY, et al. Promising role of [18F] fluorocholine PET/CT vs [18F] fluorodeoxyglucose PET/CT in primary brain tumors-early experience. Clin Neurol Neurosurg, 2011, 113(2): 156-161.
[31] Mao P, Joshi K, Li J, et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A, 2013, 110(21): 8644-8649.
[32] Walter F, Cloughesy T, Walter MA, et al. Impact of 3, 4-dihydroxy-6-18F-fluoro-L- phenylalanine PET/CT on managing patients with brain tumors: the referring physician's perspective. J Nucl Med, 2012, 53(3): 393-398.
[33] Santra A, Kumar R, Sharma P, et al. F-18 FDG PET-CT for predicting survival in patients with recurrent glioma: a prospective study. Neuroradiology, 2011, 53(12): 1017-1024.
[34] Charnley N, West CM, Barnett CM, et al. Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy. Int J Radiat Oncol Biol Phys, 2006, 66(2): 331-338.
[35] Hutterer M, Nowosielski M, Putzer D, et al. O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med, 2011, 52(6): 856-864.
[36] González-Forero M, Prieto E, Domínguez I, et al. Dual time point 18F-FDOPA PET as a tool for characterizing brain tumors. Rev Esp Med Nucl, 2011, 30(2): 88-93.