[1] Nucera C, Lawler J, Parangi S. BRAF(V600E) and microenvironment in thyroid cancer:a functional Link to drive cancer progression[J]. Cancer Res, 2011, 71(7):2417-2422.
[2] Capper D, Preusser M, Habel A, et al. Assessment of BRAFV600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody[J]. Acta Neuropathol, 2011, 122(1):11-19.  doi: 10.1007/s00401-011-0841-z
[3] 刘斌, 匡安仁. MAPK/ERK和PI3K/Akt信号通道的基因变异与甲状腺癌的发生发展及诊治[J].生物医学工程学杂志, 2012, 29(6):1221-1225.
[4] Xing M. BRAF mutation in papillary thyroid cancer:pathogenic role, molecular bases, and clinical implications[J]. Endocr Rev, 2007, 28(7):742-762.  doi: 10.1210/er.2007-0007
[5] Danilovic DL, Lima EU, Domingues RB, et al. Pre-operative role of BRAF in the guidance of the surgical approach and prognosis of differentiated thyroid carcinoma[J]. Eur J Endocrinol, 2014, 170(4):619-625.
[6] Rivkees SA, Mazzaferri EL, Verburg FA, et al. The treatment of differentiated thyroid cancer in children:emphasis on surgical approach and radioactive Iodine therapy[J]. Endocr Rev, 2011, 32(6):798-826.
[7] Cañadas-Garre M, Becerra-Massare P, López de la Torre-Casares DM, et al. Reduction of false-negative papillary thyroid carcinomas by the routine analysis of BRAF(T1799A) mutation on fine-needle aspiration biopsy specimens:a prospective study of 814 thyroid FNAB patients[J]. Ann Surg, 2012, 255(5):986-992.  doi: 10.1097/SLA.0b013e31824e8d70
[8] Albarel F, Conte-Devolx B, Oliver C. From nodule to differentiated thyroid carcinoma:Contributions of molecular analysis in 2012[J]. Ann Endocrinol(Paris), 2012, 73(3):155-164.  doi: 10.1016/j.ando.2012.03.002
[9] Dujardin F, Pagès JC, Collin C, et al. BRAF V600E mutation in papillary thyroid carcinoma:prevalence and detection in fine needle aspiration specimens[J]. Ann Pathol, 2010, 30(4):252-262.
[10] Tang KT, Lee CH. BRAF mutation in papillary thyroid carcinoma:pathogenic role and clinical implications[J]. J Chin Med Assoc, 2010, 73(3):113-128.  doi: 10.1016/S1726-4901(10)70025-3
[11] Lee JW, Koo BS. The prognostic implication and potential role of BRAF mutation in the decision to perform elective neck dissection for thyroid cancer[J]. Gland Surg, 2013, 2(4):206-211.
[12] Pelizzo MR, Dobrinja C, Casal IE, et al. The role of BRAF(V600E) mutation as poor prognostic factor for the outcome of patients with intrathyroid papillary thyroid carcinoma[J]. Biomed Pharmacother, 2014, 68(4):413-417.  doi: 10.1016/j.biopha.2014.03.008
[13] Yang K, Wang H, Liang ZY, et al. BRAFV600E mutation associated with Non-Radioiodine-Avid status in distant metastatic papillary thyroid carcinoma[J]. Clin Nucl Med, 2014, 39(8):675-679.  doi: 10.1097/RLU.0000000000000498
[14] American Thyroid Association(ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM, et al. Revised American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2009, 19(11):1167-1214.  doi: 10.1089/thy.2009.0110
[15] 中华医学会内分泌分会, 中华医学会外科学分会内分泌学组, 中国抗癌协会头颈肿瘤专业委员会, 等.甲状腺结节和分化型甲状腺癌诊治指南[J].中华核医学与分子影像杂志, 2013, 33(2):96-115.  doi: 10.3760/cma.j.issn.2095-2848.2013.02.003
[16] Walczyk A, Kowalska A, Kowalik A, et al. The BRAFV600E mutation in papillary thyroid microcarcinoma:does the mutation have an impact on clinical outcome?[J]. Clin Endocrinol(Oxf), 2014, 80(6):899-904.  doi: 10.1111/cen.12386
[17] Xing MZ, Alzahrani AS, Carson KA, et al. Association between BRAFV600E mutation and mortality in patients with papillary thyroid cancer[J]. JAMA, 2013, 309(14):1493-1501.  doi: 10.1001/jama.2013.3190
[18] Schweppe RE, Kerege AA, Sharma VA, et al. Distinct genetic alterations in the Mitogen-Activated protein kinase pathway dictate sensitivity of thyroid cancer cells to Mitogen-Activated protein kinase kinase 1/2 inhibition[J]. Thyroid, 2009, 19(8):825-835.  doi: 10.1089/thy.2008.0362
[19] Knauf JA, Ma X, Smith EP, et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation[J]. Cancer Res, 2005, 65(10):4238-4245.  doi: 10.1158/0008-5472.CAN-05-0047
[20] Hou P, Bojdani E, Xing M. Induction of thyroid gene expression and radioiodine uptake in thyroid cancer cells by targeting major signaling pathways[J]. J Clin Endocrinol Metab, 2010, 95(2):820-828.  doi: 10.1210/jc.2009-1888
[21] Haraldsdottir S, Shah MH. New era for treatment in differentiated thyroid cancer[J]. Lancet, 2014, 384(9940):286-288.  doi: 10.1016/S0140-6736(14)60663-2
[22] Hayes DN, Lucas AS, Tanvetyanon T, et al. Phase II efficacy and pharmacogenomic study of Selumetinib(AZD6244; ARRY-142886)in iodine-131 refractory papillary thyroid carcinoma with or without follicular elements[J]. Clin Cancer Res, 2012, 18(7):2056-2065.  doi: 10.1158/1078-0432.CCR-11-0563
[23] Brose MS, Nutting CM, Jarzab BA, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer:a randomised, double-blind, phase 3 trial[J]. Lancet, 2014, 384(9940):319-328.  doi: 10.1016/S0140-6736(14)60421-9
[24] Fallahi P, Ferrari SM, Mazzi V, et al. Personalization of targeted therapy in advanced thyroid cancer[J]. Curr Genomics, 2014, 15(3):190-202.  doi: 10.2174/1389202915999140404101902