[1] Pichler BJ, Wehrl HF, Judenhofer MS.  Latest advances in molecular imaging instrumentation[J]. J Nucl Med, 2008, 49(Suppl 2): 5S-23S.   doi: 10.2967/jnumed.108.045880
[2] Antoch G, Bockisch A.  Combined PET/MRI: a new dimension in whole-body oncology imaging?[J]. Eur J Nucl Med Mol Imaging, 2009, 36(Suppl 1): S113-S120.
[3] Bolus NE, George R, Washington J, et al.  PET/MRI: the blendedmodality choice of the future?[J]. J Nucl Med Technol, 2009, 37(2): 63-71.   doi: 10.2967/jnmt.108.060848
[4] Wehrl HF, Judenhofer MS, Wiehr S, et al.  Pre-clinical PET/MR: technological advances and new perspectives in biomedical research[J]. EurJ Nucl Med Mol Imaging, 2009, 36(Suppl1): S56-S68.
[5] Delso G, Ziegler S.  PET/MRI system design[J]. Eur J Nucl Med MolImaging, 2009, 36(Suppl 1): S86-S92.
[6] Sauter AW, Wehrl HF, Kolb A, et al.  Combined PET/MRI: one stepfurther in multimodality imaging[J]. Trends Mol Med, 2010, 16(11): 508-515.   doi: 10.1016/j.molmed.2010.08.003
[7] Shao Y, Cherry S R, Farahani K, et al.  Development of a PET detector system compatible with MRI/NMR systems[J]. IEEE Trans Nucl Sci, 1997, 44(3): 1167-1171.   doi: 10.1109/23.596982
[8] Marsden PK, Strul D, Keevil SF, et al.  Simultaneous PET and NMR[J]. Br J Radiol, 2002, 75(Suppl 9): S53-S59.
[9] Pichler BJ, Swann BK, Rochelle J, et al.  Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET[J]. Phys Med Biol, 2004, 49(18): 4305-4319.   doi: 10.1088/0031-9155/49/18/008
[10] M artinez-Möller A, Souvatzoglou M, Delso G, et al.  Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data[J]. J Nucl Med, 2009, 50(4): 520-526.   doi: 10.2967/jnumed.108.054726
[11] Judenhofer MS, Wehrl HF, Newport DF, et al.  Simultaneous PETMRI: a new approach for functional and morphological imaging[J]. Nat Med, 2008, 14(4): 459-465.   doi: 10.1038/nm1700
[12] Catana C, Procissi D, Wu Y, et al.  Simultaneous in vivo positron emission tomography and magnetic resonance imaging[J]. Proc Natl Acad Sci U S A, 2008, 105(10): 3705-3710.   doi: 10.1073/pnas.0711622105
[13] Schlemmer HP, Pichler BJ, Krieg R, et al.  An integrated MR/PET system: prospective applications[J]. Abdom Imaging, 2009, 34(6): 668-674.   doi: 10.1007/s00261-008-9450-2
[14] Schlemmer HP, Pichler BJ, Schmand M, et al.  Simultaneous MR/ PET imaging of the human brain: feasibility study[J]. Radiology, 2008, 248(3): 1028-1035.   doi: 10.1148/radiol.2483071927
[15] Schlemmer HP, Pichler B, Wienhard K, et al.  Simultaneous MR/ PET for brain imaging: first patient scans[J]. J Nucl Med, 2007, 48(Suppl 2): 45P-.
[16] Boss A, Kolb A, Hofmann M, et al.  Diffusion tensor imaging in a human PET/MR hybrid system[J]. Invest Radiol, 2010, 45(5): 270-274.   doi: 10.1097/RLI.0b013e3181dc3671
[17] Lucas AJ, Hawkes RC, Ansorge RE, et al.  Development of a combined microPET-MR system[J]. Technol Cancer Res Treat, 2006, 5(4): 337-341.   doi: 10.1177/153303460600500405
[18] Yamamoto S, Imaizumi M, Kanai Y, et al.  Design and performance from an integrated PET/MRI system for small animals[J]. Ann Nucl Med, 2010, 24(2): 89-98.   doi: 10.1007/s12149-009-0333-6
[19] Handler W, Chronik B, Scholl T, et al.  Combining field-cycled magnetic resonance imaging with positron emission tomography[J]. J Nucl Med, 2007, 48(Suppl 2): 89p-.
[20] Gilbert KM, Handler WB, Scholl TJ, et al.  Design of field-cycled magnetic resonance systems for small animal imaging[J]. Phys Med Biol, 2006, 51(11): 2825-2841.   doi: 10.1088/0031-9155/51/11/010
[21] Hofmann M, Steinke F, Scheel V, et al.  MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration[J]. J Nucl Med, 2008, 49(11): 1875-1883.   doi: 10.2967/jnumed.107.049353
[22] Keereman V, Fierens Y, Broux T, et al.  MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences[J]. J Nucl Med, 2010, 51(5): 812-818.   doi: 10.2967/jnumed.109.065425
[23] Schulz V, Torres-Espallardo I, Renisch S, et al.  Automatic, threesegment, MR-based attenuation correction for whole-body PET/MR data[J]. Eur J Nucl Med Mol Imaging, 2011, 38(1): 138-152.   doi: 10.1007/s00259-010-1603-1
[24] Salomon A, Goedicke A, Schweizer B, et al.  Simultaneous reconstruction of activity and attenuation for PET/MR[J]. IEEE Trans Med Imaging, 2011, 30(3): 804-813.   doi: 10.1109/TMI.2010.2095464
[25] Hofmann M, Pichler B, Schölkopf B, et al.  Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques[J]. Eur J Nucl Med Mol Imaging, 2009, 36(Suppl 1): S93-S104.
[26] Thesen S, Heid O, Mueller E, et al.  Prospective acquisition correction for head motion with image-based tracking for real-time fMRI[J]. Magn Reson Med, 2000, 44(3): 457-465.   doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
[27] Catana C, Benner T, van der Kouwe A, et al.  MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner[J]. J Nucl Med, 2011, 52(1): 154-161.   doi: 10.2967/jnumed.110.079343
[28] Cho ZH, Son YD, Kim HK, et al.  A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain[J]. Proteomics, 2008, 8(6): 1302-1323.   doi: 10.1002/pmic.200700744
[29] Cho ZH, Son YD, Kim HK, et al.  Substructural hippocampal glucose metabolism observed on PET/MRI[J]. J Nucl Med, 2010, 51(10): 1545-1548.   doi: 10.2967/jnumed.110.076182
[30]

Cho ZH, Son YD, Kim HK, et al. Horizontal versus longitudinal axis of the hippocampus: metabolic differentiation as measured with high-resolution PET/MRI. J Nucl Med, 2011, [Epub ahead of print].

[31] Cho ZH, Son YD, Kim HK, et al.  Observation of glucose metabolism in the thalamic nuclei by fusion PET/MRI[J]. J Nucl Med, 2011, 52(3): 401-404.   doi: 10.2967/jnumed.110.081281
[32] Thor warth D, Henke G, Müller AC, et al.  Simultaneous(68)Ga-DOTATOC-PET/MRI for IMRT treatment planning for meningioma: first experience[J]. Int J Radiat Oncol Biol Phys, 2011, 81(1): 277-283.   doi: 10.1016/j.ijrobp.2010.10.078
[33] Chapon C, Jackson JS, Aboagye EO, et al.  An in vivo multimodal imaging study using MRI and PET of stem cell transplantation after myocardial infarction in rats[J]. Mol Imaging Biol, 2009, 11(1): 31-38.   doi: 10.1007/s11307-008-0174-z
[34] Ciccarelli O, Catani M, Johansen-Berg H, et al.  Diffusion-based tractography in neurological disorders: concepts, applications, and future developments[J]. Lancet Neurol, 2008, 7(8): 715-727.   doi: 10.1016/S1474-4422(08)70163-7
[35] Büscher K, Judenhofer MS, Kuhlmann MT, et al.  Isochronous assessment of cardiac metabolism and function in mice using hybrid PET/MRI[J]. J Nucl Med, 2010, 51(8): 1277-1284.   doi: 10.2967/jnumed.110.076448
[36] Nekolla SG, Martinez-Moeller A, Saraste A.  PET and MRI in cardiac imaging: from validation studies to integrated applications[J]. Eur J Nucl Med Mol Imaging, 2009, 36(Suppl 1): S121-S130.
[37] Daftary A.  PET-MRI: challenges and new directions[J]. Indian J Nucl Med, 2010, 25(1): 3-5.   doi: 10.4103/0972-3919.63590
[38] Van Goethem M, Tjalma W, Schelfout K, et al.  Magnetic resonance imaging in breast cancer[J]. Eur J Surg Oncol, 2006, 32(9): 901-910.   doi: 10.1016/j.ejso.2006.06.009
[39] Bao A, Goins B, Dodd GD 3rd, et al.  Real-time iterative monitoring of radiofrequency ablation tumor therapy with 15O-water PETimaging[J]. J Nucl Med, 2008, 49(10): 1723-1729.   doi: 10.2967/jnumed.108.052886
[40] Lee S, Chen X.  Dual-modality probes for in vivo molecular imaging[J]. Mol Imaging, 2009, 8(2): 87-100.
[41] Lee HY, Li Z, Chen K, et al.  PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic(RGD)-conjugated radiolabeled iron oxide nanoparticles[J]. J Nucl Med, 2008, 49(8): 1371-1379.   doi: 10.2967/jnumed.108.051243
[42] Xie J, Huang J, Li X, et al.  Iron oxide nanoparticle platform for biomedic alapplications[J]. Curr Med Chem, 2009, 16(10): 1278-1294.   doi: 10.2174/092986709787846604
[43] Cheon J, Lee JH.  Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology[J]. Acc Chem Res, 2008, 41(12): 1630-1640.   doi: 10.1021/ar800045c
[44] Shokeen M, Fettig NM, Rossin R.  Synthesis, in vitro and in vivo evaluation of radiolabeled nanoparticles[J]. Q J Nucl Med Mol Imaging, 2008, 52(3): 267-277.
[45] Glaus C, Rossin R, Welch MJ, et al.  In vivo evaluation of (64)Culabeled magnetic nanoparticles as a dual-modality PET/MR imaging agent[J]. Bioconjug Chem, 2010, 21(4): 715-722.   doi: 10.1021/bc900511j
[46] Patel D, Kell A, Simard B, et al.  The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents[J]. Biomaterials, 2011, 32(4): 1167-1176.   doi: 10.1016/j.biomaterials.2010.10.013
[47] Xie J, Chen K, Huang J, et al.  PET/NIRF/MRI triple functional iron oxide nanoparticles[J]. Biomaterials, 2010, 31(11): 3016-3022.   doi: 10.1016/j.biomaterials.2010.01.010
[48] Park JC, Yu MK, An GI, et al.  Facile preparation of a hybrid nanoprobe for triple-modality optical/PET/MR imaging[J]. Small, 2010, 6(24): 2863-2868.   doi: 10.1002/smll.201001418
[49] Stelter L, Pinkernelle JG, Michel R, et al.  Modification of aminosilanized superparamagnetic nanoparticles: feasibility of multimodal detection using 3T MRI, small animal PET, and fluorescence imaging[J]. Mol Imaging Biol, 2010, 12(1): 25-34.   doi: 10.1007/s11307-009-0237-9
[50] Higuchi T, Anton M, Dumler K, et al.  Combined reporter gene PET and iron oxide MRI for monitoring survival and localization of transplanted cells in the rat heart[J]. J NuclMed, 2009, 50(7): 1088-1094.
[51] Uppal R, Catana C, Ay I, et al.  Bimodal thrombus imaging: simultaneous PET/MR imaging with a fibrin-targeted dual PET/MR probe--feasibility study in rat model[J]. Radiology, 2011, 258(3): 812-820.   doi: 10.1148/radiol.10100881