[1] GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, et al.  Health Effects of Overweight and Obesity in 195 Countries over 25 Years[J]. N Engl J Med, 2017, 377(1): 13-27.   doi: 10.1056/NEJMoa1614362
[2]

World Health Organization. Obesity and overweight [EB/OL]. [2019-09-19]. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight.

[3]

Yazdi FT, Clee SM, Meyre D. Obesity genetics in mouse and human: back and forth, and back again[J/OL]. PeerJ, 2015, 3: e856 [2019-09-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375971. DOI: 10.7717/peerj.856.

[4]

Budnik A, Henneberg M. Worldwide Increase of Obesity Is Related to the Reduced Opportunity for Natural Selection[J/OL]. PLoS One, 2017, 12(1): e0170098 [2019-09-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249151. DOI: 10.1371/journal.pone.0170098.

[5] Gomez-Dantes H, Fullman N, Lamadrid-Figueroa H, et al.  Dissonant health transition in the states of Mexico, 1990−2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2016, 388(10058): 2386-2402.   doi: 10.1016/S0140-6736(16)31773-1
[6] Bray GA, Fruhbeck G, Ryan DH, et al.  Management of obesity[J]. Lancet, 2016, 387(10031): 1947-1956.   doi: 10.1016/S0140-6736(16)00271-3
[7] GBD 2015 Risk Factors Collaborators.  Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet, 2016, 388(10053): 1659-1724.   doi: 10.1016/S0140-6736(16)31679-8
[8] Swinburn BA, Kraak VI, Allender S, et al.  The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report[J]. Lancet, 2019, 393(10173): 791-846.   doi: 10.1016/S0140-6736(18)32822-8
[9] Barnhart KF, Christianson DR, Hanley PW, et al.  A Peptidomimetic Targeting White Fat Causes Weight Loss and Improved Insulin Resistance in Obese Monkeys[J]. Sci Transl Med, 2011, 3(108): 108ra112-.   doi: 10.1126/scitranslmed.3002621
[10] Schlögl H, Horstmann A, Villringer A, et al.  Functional neuroimaging in obesity and the potential for development of novel treatments[J]. Lancet Diabetes Endocrinol, 2016, 4(8): 695-705.   doi: 10.1016/S2213-8587(15)00475-1
[11] Guzzardi MA, Iozzo P.  Brain functional imaging in obese and diabetic patients[J]. Acta Diabetol, 2019, 56(2): 135-144.   doi: 10.1007/s00592-018-1185-0
[12] Hirvonen J.  In vivo imaging of the cannabinoid CB1 receptor with positron emission tomography[J]. Clin Pharmacol Ther, 2015, 97(6): 565-567.   doi: 10.1002/cpt.116
[13] Sala A, Perani D.  Brain Molecular Connectivity in Neurodegenerative Diseases: Recent Advances and New Perspectives Using Positron Emission Tomography[J]. Front Neurosci, 2019, 13: 617-.   doi: 10.3389/fnins.2019.00617
[14]

Wilson H, De Micco R, Niccolini F, et al. Molecular Imaging Markers to Track Huntington's Disease Pathology[J/OL]. Front Neurol, 2017, 8: 11 [2019-09-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278260. DOI: 10.3389/fneur.2017.00011.

[15] Placzek MS, Zhao WJ, Wey HY, et al.  PET Neurochemical Imaging Modes[J]. Semin Nucl Med, 2016, 46(1): 20-27.   doi: 10.1053/j.semnuclmed.2015.09.001
[16] Volkow ND, Wise RA, Baler R.  The dopamine motive system: implications for drug and food addiction[J]. Nat Rev Neurosci, 2017, 18(12): 741-752.   doi: 10.1038/nrn.2017.130
[17] Horstmann A, Fenske WK, Hankir MK.  Argument for a non-linear relationship between severity of human obesity and dopaminergic tone[J]. Obes Rev, 2015, 16(10): 821-830.   doi: 10.1111/obr.12303
[18] Cosgrove KP, Veldhuizen MG, Sandiego CM, et al.  Opposing relationships of BMI with BOLD and dopamine D2/3 receptor binding potential in the dorsal striatum[J]. Synapse, 2015, 69(4): 195-202.   doi: 10.1002/syn.21809
[19] Gaiser EC, Gallezot JD, Worhunsky PD, et al.  Elevated Dopamine D2/3 Receptor Availability in Obese Individuals: A PET Imaging Study with [11C](+) PHNO[J]. Neuropsychopharmacology, 2016, 41(13): 3042-3050.   doi: 10.1038/npp.2016.115
[20] Dunn JP, Cowan RL, Volkow ND, et al.  Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings[J]. Brain Res, 2010, 1350: 123-130.   doi: 10.1016/j.brainres.2010.03.064
[21] Wang GJ, Volkow ND, Logan J, et al.  Brain dopamine and obesity[J]. Lancet, 2001, 357(9253): 354-357.   doi: 10.1016/S0140-6736(00)03643-6
[22] Haltia LT, Rinne JO, Merisaari H, et al.  Effects of intravenous glucose on dopaminergic function in the human brain in vivo[J]. Synapse, 2007, 61(9): 748-756.   doi: 10.1002/syn.20418
[23] Volkow ND, Wang GJ, Telang F, et al.  Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors[J]. NeuroImage, 2008, 42(4): 1537-1543.   doi: 10.1016/j.neuroimage.2008.06.002
[24] Steele KE, Prokopowicz GP, Schweitzer MA, et al.  Alterations of Central Dopamine Receptors Before and After Gastric Bypass Surgery[J]. Obes Surg, 2010, 20(3): 369-374.   doi: 10.1007/s11695-009-0015-4
[25] Karlsson HK, Tuominen L, Tuulari JJ, et al.  Obesity Is Associated with Decreased μ-Opioid But Unaltered Dopamine D2 Receptor Availability in the Brain[J]. J Neurosci, 2015, 35(9): 3959-3965.   doi: 10.1523/JNEUROSCI.4744-14.2015
[26] Dunn JP, Kessler RM, Feurer ID, et al.  Relationship of Dopamine Type 2 Receptor Binding Potential With Fasting Neuroendocrine Hormones and Insulin Sensitivity in Human Obesity[J]. Diabetes Care, 2012, 35(5): 1105-1111.   doi: 10.2337/dc11-2250
[27] Vollbrecht PJ, Nesbitt KM, Mabrouk OS, et al.  Cocaine and desipramine elicit distinct striatal noradrenergic and behavioral responses in selectively bred obesity-resistant and obesity-prone rats[J]. Behav Brain Res, 2018, 346: 137-143.   doi: 10.1016/j.bbr.2017.11.009
[28]

Urstadt KR, Stanley BG. Direct hypothalamic and indirect trans-pallidal, trans-thalamic, or trans-septal control of accumbens signaling and their roles in food intake[J/OL]. Front Syst Neurosci, 2015, 9: 8 [2019-09-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327307. DOI: 10.3389/fnsys.2015.00008.

[29] Li CS, Potenza MN, Lee DE, et al.  Decreased norepinephrine transporter availability in obesity: Positron Emission Tomography imaging with (S,S)-[11C]O-methylreboxetine[J]. Neuroimage, 2014, 86: 306-310.   doi: 10.1016/j.neuroimage.2013.10.004
[30] Bresch A, Rullmann M, Luthardt J, et al.  Emotional eating and in vivo norepinephrine transporter availability in obesity: A[11C]MRB PET pilot study[J]. Int J Eat Disord, 2017, 50(2): 152-156.   doi: 10.1002/eat.22621
[31] Hesse S, Becker GA, Rullmann M, et al.  Central noradrenaline transporter availability in highly obese, non-depressed individuals[J]. Eur J Nucl Med Mol Imaging, 2017, 44(6): 1056-1064.   doi: 10.1007/s00259-016-3590-3
[32] Melasch J, Rullmann M, Hilbert A, et al.  The central nervous norepinephrine network links a diminished sense of emotional well-being to an increased body weight[J]. Int J Obes (Lond), 2016, 40(5): 779-787.   doi: 10.1038/ijo.2015.216
[33] Vettermann FJ, Rullmann M, Becker GA, et al.  Noradrenaline transporter availability on [11C] MRB PET predicts weight loss success in highly obese adults[J]. Eur J Nucl Med Mol Imaging, 2018, 45(9): 1618-1625.   doi: 10.1007/s00259-018-4002-7
[34] Bresch A, Rullmann M, Luthardt J, et al.  Hunger and disinhibition but not cognitive restraint are associated with central norepinephrine transporter availability[J]. Appetite, 2017, 117: 270-274.   doi: 10.1016/j.appet.2017.06.020
[35]

Val-Laillet D, Aarts E, Weber B, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity[J/OL]. NeuroImage Clin, 2015, 8: 1−31 [2019-09-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4473270. DOI: 10.1016/j.nicl.2015.03.016.

[36] Joutsa J, Karlsson HK, Majuri J, et al.  Binge eating disorder and morbid obesity are associated with lowered mu-opioid receptor availability in the brain[J]. Psychiatry Res Neuroimaging, 2018, 276: 41-45.   doi: 10.1016/j.pscychresns.2018.03.006
[37] Tuominen L, Tuulari J, Karlsson H, et al.  Aberrant mesolimbic dopamine-opiate interaction in obesity[J]. Neuroimage, 2015, 122: 80-86.   doi: 10.1016/j.neuroimage.2015.08.001
[38] Burghardt PR, Rothberg AE, Dykhuis KE, et al.  Endogenous Opioid Mechanisms Are Implicated in Obesity and Weight Loss in Humans[J]. J Clin Endocrinol Metab, 2015, 100(8): 3193-3201.   doi: 10.1210/jc.2015-1783
[39] Karlsson HK, Tuulari JJ, Tuominen L, et al.  Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity[J]. Mol Psychiatry, 2016, 21(8): 1057-1062.   doi: 10.1038/mp.2015.153
[40] Erritzoe D, Frokjaer VG, Haahr MT, et al.  Cerebral serotonin transporter binding is inversely related to body mass index[J]. Neuroimage, 2010, 52(1): 284-289.   doi: 10.1016/j.neuroimage.2010.03.086
[41] Hinderberger P, Rullmann M, Drabe M, et al.  The effect of serum BDNF levels on central serotonin transporter availability in obese versus non-obese adults: A [11C] DASB positron emission tomography study[J]. Neuropharmacology, 2016, 110: 530-536.   doi: 10.1016/j.neuropharm.2016.04.030
[42] Lötsch J, Weyer-Menkhoff I, Tegeder I.  Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings[J]. Eur J Pain, 2018, 22(3): 471-484.   doi: 10.1002/ejp.1148
[43]

Ceccarini J, Weltens N, Ly HG, Tack J, et al. Association between cerebral cannabinoid 1 receptor availability and body mass index in patients with food intake disorders and healthy subjects: a [18F] MK-9470 PET study[J/OL]. Transl Psychiatry, 2016, 6(7): e853 [2019-09-19]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5545708. DOI: 10.1038/tp.2016.118.