[1] Kim MH, Kim SG, Kim CG, et al.  A novel Tc-99m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine hindlimb ischemia model[J]. Appl Radiat Isot, 2017, 121: 22-27.   doi: 10.1016/j.apradiso.2016.12.026
[2] Guzman ZMD, Cervancia CR, Dimasuay KGB, et al.  Radiation inactivation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using 60Co gamma rays[J]. Appl Radiat Isot, 2011, 69(10): 1374-1379.   doi: 10.1016/j.apradiso.2011.05.032
[3] Durpel LVD, Guesdon B, Lecomte M.  Industrial prospects for the optimized use of U, Pu and Th for sustainable nuclear energy deployment[J]. Energy Procedia, 2011, 7: 21-33.   doi: 10.1016/j.egypro.2011.06.004
[4]

Meylan S, Incerti S, Karamitros M, et al. Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA[J/OL]. Sci Rep, 2017, 7(1): 11923[2020-03-10]. http://www.nature.com/srep/index.html. DOI: 10.1038/s41598-017-11851-4.

[5] Burkart W, Danesi PR, Hendry JH.  Properties, use and health effects of depleted uranium[J]. Int Congress Series, 2005, 1276: 133-136.   doi: 10.1016/j.ics.2004.09.047
[6] Atabek R, Bouniol P, Vitorge P, et al.  Cement use for radioactive waste embedding and disposal purposes[J]. Cem Concr Res, 1992, 22(2/3): 419-429.   doi: 10.1016/0008-8846(92)90084-9
[7] Ambashta RD, Sillanpää MET.  Membrane purification in radioactive waste management: a short review[J]. J Environ Radioact, 2012, 105: 76-84.   doi: 10.1016/j.jenvrad.2011.12.002
[8] Daer S, Kharraz J, Giwa A, et al.  Recent applications of nanomaterials in water desalination: A critical review and future opportunities[J]. Desalination, 2015, 367: 37-48.   doi: 10.1016/j.desal.2015.03.030
[9] Stankovich S, Piner RD, Chen XQ, et al.  Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. J Mater Chem, 2006, 16(2): 155-158.   doi: 10.1039/b512799h
[10] Jin ZX, Sheng J, Sun YB.  Characterization of radioactive cobalt on graphene oxide by macroscopic and spectroscopic techniques[J]. J Radioanal Nucl Chem, 2014, 299(3): 1979-1986.   doi: 10.1007/s10967-019-06538-1
[11] Fang F, Kong L, Huang J, et al.  Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite[J]. J Hazard Mater, 2014, 270: 1-10.   doi: 10.1016/j.jhazmat.2014.01.031
[12] Song WC, Wang XX, Wang Q, et al.  Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J]. Phys Chem Chem Phys, 2015, 17(1): 398-406.   doi: 10.1039/c4cp04289a
[13] Sun YB, Shao DD, Chen CL, et al.  Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J]. Environ Sci Technol, 2013, 47(17): 9904-9910.   doi: 10.1021/es401174n
[14] Lijima S.  Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58.   doi: 10.1038/354056a0
[15] Belloni F, Kutahyali C, Rondinella VV, et al.  Can carbon nanotubes play a role in the field of nuclear waste management?[J]. Environ Sci Technol, 2009, 43(5): 1250-1255.   doi: 10.1021/es802764g
[16] Wang XK, Chen CL, Hu WP, et al.  Sorption of 243Am(Ⅲ) to multiwall carbon nanotubes[J]. Environ Sci Technol, 2005, 39(8): 2856-2860.   doi: 10.1021/es048287d
[17] Shao DD, Jiang ZQ, Wang XK, et al.  Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution[J]. J Phys Chem B, 2009, 113(4): 860-864.   doi: 10.1021/jp8091094
[18] Shim JW, Park SJ, Ryu SK.  Effect of modification with HNO3 and NaOH on metal adsorption by Pitch-based activated carbon fibers[J]. Carbon, 2001, 39(11): 1635-1642.   doi: 10.1016/S0008-6223(00)00290-6
[19] Yang DJ, Zheng ZF, Liu HW, et al.  Layered Titanate Nanofibers as Efficient Adsorbents for Removal of Toxic Radioactive and Heavy Metal Ions from Water[J]. J Phys Chem C, 2008, 112(42): 16275-16280.   doi: 10.1021/jp803826g
[20] Yang DJ, Zheng ZF, Yuan Y, et al.  Sorption induced structural deformation of sodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra(Ⅱ) ions from water[J]. Phys Chem Chem Phys, 2010, 12(6): 1271-1277.   doi: 10.1039/b911085b
[21] Tan XL, Wang XK, Fang M, et al.  Sorption and desorption of Th(Ⅳ) on nanoparticles of anatase studied by batch and spectroscopy methods[J]. Colloids Surf A physicochem Eng Asp, 2007, 296(1−3): 109-116.   doi: 10.1016/j.colsurfa.2006.09.032
[22] Liu SS, Wang N, Zhang YC, et al.  Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O-Ag/TiO2 composites under visible light irradiation[J]. J Hazard Mater, 2015, 284: 171-181.   doi: 10.1016/j.jhazmat.2014.10.054
[23] Shao L, Wang XF, Ren YM, et al.  Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for uranium removal[J]. Chem Eng J, 2016, 286: 311-319.   doi: 10.1016/j.cej.2015.10.062
[24] Kadam AA, Jang J, Lee DS.  Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution[J]. Bioresour Technol, 2016, 216: 391-398.   doi: 10.1016/j.biortech.2016.05.103
[25] Liu Y, Zhao ZP, Yuan DZ, et al.  Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3O4 nanoparticles for enhanced selective U(Ⅵ) adsorption[J]. Appl Surf Sci, 2019, 466: 893-902.   doi: 10.1016/j.apsusc.2018.10.097
[26] Naeimi S, Faghihian H.  Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs+ from aqueous solution[J]. Sep Purif Technol, 2017, 175: 255-265.   doi: 10.1016/j.seppur.2016.11.028
[27] Lv ZM, Yang SM, Chen L, et al.  Nanoscale zero-valent iron/magnetite carbon composites for highly efficient immobilization of U(Ⅵ)[J]. J Environ Sci(China), 2019, 76: 377-387.   doi: 10.1016/j.jes.2018.06.001
[28] Hu QY, Zhu YL, Hu BW, et al.  Mechanistic insights into sequestration of U(Ⅵ) toward magnetic biochar: Batch, XPS and EXAFS techniques[J]. J Environ Sci(China), 2018, 70: 217-225.   doi: 10.1016/j.jes.2018.01.013
[29] Lujanienė G, Šemčuk S, Lečinskytė A, et al.  Magnetic graphene oxide based nano-composites for removal of radionuclides and metals from contaminated solutions[J]. J Environ Radioactiv, 2017, 166(Pt 1): 166-174.   doi: 10.1016/j.jenvrad.2016.02.014
[30] Zhao XD, Meng QH, Chen G, et al.  An acid-resistant magnetic Nb-substituted crystalline silicotitanate for selective separation of strontium and/or cesium ions from aqueous solution[J]. Chem Eng J, 2018, 352: 133-142.   doi: 10.1016/j.cej.2018.06.175
[31] Chen ZS, Jian W, Pu ZX, et al.  Synthesis of magnetic Fe3O4/CFA composites for the efficient removal of U(Ⅵ) from wastewater[J]. Chem Eng J, 2017, 320: 448-457.   doi: 10.1016/j.cej.2017.03.074
[32] Tang PF, Shen J, Hu ZD, et al.  High-efficient scavenging of U(Ⅵ) by magnetic Fe3O4@Gelatin composite[J]. J Mol Liq, 2016, 221: 497-506.   doi: 10.1016/j.molliq.2016.06.008
[33] Xu B, Zhu YK, Liu HB, et al.  The kinetic and thermodynamic adsorption of Eu(Ⅲ) on synthetic maghemite[J]. J Mol Liq, 2016, 221: 171-178.   doi: 10.1016/j.molliq.2016.05.055
[34] Yang HM, Hwang KS, Park CW, et al.  Sodium-copper hexacyanoferrate-functionalized magnetic nanoclusters for the highly efficient magnetic removal of radioactive caesium from seawater[J]. Water Res, 2017, 125: 81-90.   doi: 10.1016/j.watres.2017.08.037
[35] Li P, Wang JJ, Wang XL, et al.  Arsenazo-functionalized magnetic carbon composite for uranium(Ⅵ) removal from aqueous solution[J]. J Mol Liq, 2018, 269: 441-449.   doi: 10.1016/j.molliq.2018.08.073
[36] Yuan GY, Zhao CS, Tu H, et al.  Removal of Co(Ⅱ) from aqueous solution with Zr-based magnetic metal-organic framework composite[J]. Inorg Chim Acta, 2018, 483: 488-495.   doi: 10.1016/j.ica.2018.08.057
[37] Yin YN, Wang JL, Yang XY, et al.  Removal of strontium ions by immobilized saccharomyces cerevisiae in magnetic chitosan microspheres[J]. Nucl Eng Technol, 2017, 49(1): 172-177.   doi: 10.1016/j.net.2016.09.002
[38] Duan SX, Liu X, Wang YN, et al.  Highly efficient entrapment of U(Ⅵ) by using porous magnetic Ni0.6Fe2.4O4 micro-particles as the adsorbent[J]. J Taiwan Inst Chem E, 2016, 65: 367-377.   doi: 10.1016/j.jtice.2016.05.041
[39] Ivanets AI, Srivastava V, Roshchina MY, et al.  Magnesium ferrite nanoparticles as a magnetic sorbent for the removal of Mn2+, Co2+, Ni2+ and Cu2+ from aqueous solution[J]. Ceram Int, 2018, 44(8): 9097-9104.   doi: 10.1016/j.ceramint.2018.02.117
[40] Shubair T, Eljamal O, Khalil AME, et al.  Novel application of nanoscale zero valent iron and bimetallic nano-Fe/Cu particles for the treatment of cesium contaminated water[J]. J Environ Chem Eng, 2018, 6(4): 4253-4264.   doi: 10.1016/j.jece.2018.06.015