[1] Trompier F, Bassinet C, Wieser A, et al. Radiation-induced signals analysed by EPR spectrometry applied to fortuitous dosimetry[J].Ann Ist Super Sanita, 2009, 45(3):287-296.
[2] Trivedi A, Greenstock CL. Use of sugars and hair for ESR emergency dosimetry[J]. Appl Radiat Isot, 1993, 44(1-2):85-90. DOI:10.1016/0969-8043(93)90201-k.
[3] Wang L, Wang X, Zhang WY, et al. Determining dosimetric properties and lowest detectable dose of fingernail clippings from their electron paramagnetic resonance signal[J]. Health Phys, 2015, 109(1):10-14. DOI:10.1097/HP.0000000000000277.
[4] Zhang T, Zhang W, Zhao Z, et al. Two factors influencing dose reconstruction in low dose range:the variability of BKG intensity on one individual and water content[J]. Radiat Prot Dosimetry, 2016, 171(3):297-303. DOI:10.1093/rpd/ncv382.
[5] Pascu A, Vasiliniuc S, Zeciu-Dolha M, et al. The potential of luminescence signals from electronic components for accident dosimetry[J]. Radiat Meas, 2013, 56:384-388. DOI:10.1016/j.radmeas.2013.03.013.
[6] Lee JI, Chang I, Pradhan AS, et al. On the use of new generation mobile phone (smart phone) for retrospective accident dosimetry[J]. Radiat Phys Chem, 2015, 116:151-154. DOI:10.1016/j.radphyschem.2015.05.004.
[7] Bassinet C, Trompier F, Clairand I. Radiation accident dosimetry on electronic components by OSL[J]. Health Phys, 2010, 98(2):440-445. DOI:10.1097/01.HP.0000346335.56701.93.
[8] Bassinet C, Woda C, Bortolin E, et al. Retrospective radiation dosimetry using OSL of electronic components:results of an inter-laboratory comparison[J]. Radiat Meas, 2014, 71:475-479. DOI:10.1016/j.radmeas.2014.03.016.
[9] Eakins JS, Hager LG, Kouroukla E, et al. The PHE fortuitous dosimetry capability based on optically stimulated luminescence of mobile phones[J]. Radiat Prot Dosimetry, 2016, 170(1/4):412-415.DOI:10.1093/rpd/ncv520.
[10] Ranjbar AH, Randle K. Hyper pure quartz as a promising material for retrospective and radiation processing dosimetry using ESR technique[J]. Appl Radiat Isot, 2008, 66(9):1240-1244. DOI:10.1016/j.apradiso.2008.01.016.
[11] Teixeira MI, Caldas LV. Dosimetric properties of various colored commercial glasses[J]. Appl Radiat Isot, 2002, 57(3):407-413. DOI:10.1016/S0969-8043(02)00127-6.
[12] Upender G, Babu JC, Mouli VC. Structure, glass transition temperature and spectroscopic properties of 10Li2O-xP2O5-(89-x)TeO2-1CuO (5≤ x ≤ 25 mol%) glass system[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2012, 89:39-45. DOI:10.1016/j.saa.2011. 12.047.
[13] Teixeira MI, Ferraz GM, Caldas LV. EPR dosimetry using commercial glasses for high gamma doses[J]. Appl Radiat Isot, 2005, 62(2):365-370. DOI:10.1016/j.apradiso.2004.08.012.
[14] Wu K, Sun CP, Shi YM. Dosimetric properties of watch glass:a potential practical ESR dosemeter for nuclear accidents[J]. Radiat Prot Dosimetry, 1995, 59(3):223-225. DOI:10.1093/oxfordjournals.rpd.a082654.
[15] Gancheva V, Yordanov ND, Karakirova Y. EPR investigation of the gamma radiation response of different types of glasses[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2006, 63(4):875-878. DOI:10.1016/j.saa.2005.10.019.
[16] Bassinet C, Trompier F, Clairand I. Radiation accident dosimetry on glass by TL and EPR spectrometry[J]. Health Phys, 2010, 98(2):400-405. DOI:10.1097/01.HP.0000346330.72296.51.
[17] Trompier F, Burbidge C, Bassinet C, et al. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB[J]. Int J Radiat Biol, 2017, 93(1):65-74. DOI:10.1080/09553002.2016.1221545.
[18] Longo A, Basile S, Brai M, et al. ESR response of watch glasses to proton beams[J]. Nucl Instrum Methods Phys Res B, 2010, 268(17-18):2712-2718. DOI:10.1016/j.nimb.2010.05.073.
[19] Trompier F, Della Monaca S, Fattibene P, et al. EPR dosimetry of glass substrate of mobile phone LCDs[J]. Radiat Meas, 2011, 46(9):827-831. DOI:10.1016/j.radmeas. 2011.03.033.
[20]

Lund A, Shiotani M. Applications of EPR in Radiation Research[M]. Heidelberg:Springer International Publishing, 2014:255-298.

[21] Marrale M, Longo A, D'Oca MC, et al. Watch glasses exposed to 6 MV photons and 10 MeV electrons analysed by means of ESR technique:A preliminary study[J]. Radiat Meas, 2011, 46(9):822-826. DOI:10.1016/j.radmeas.2011.05.003.
[22] Fattibene P, Trompier F, Wieser A, et al. EPR dosimetry inter-comparison using smart phone touch screen glass[J]. Radiat Environ Biophys, 2014, 53(2):311-320. DOI:10.1007/s00411-014-0533-x.
[23] Engin B, AydaşC, DemirtaşH. ESR dosimetric properties of window glass[J]. Nucl Instrum Methods Phys Res B, 2006, 243(1):149-155. DOI:10.1016/j.nimb.2005.08.151.
[24] Trompier F, Bassinet C, Della Monaca S, et al. Overview of physical and biophysical techniques for accident dosimetry[J]. Radiat Prot Dosimetry, 2011, 144(1/4):571-574. DOI:10.1093/rpd/ncq341.
[25] Narayan P, Vaijapurkar SG, Senwar KR, et al. Accidental gamma dose measurement using commercial glasses[J]. Radiat Prot Dosimetry, 2008, 130(3):319-324. DOI:10.1093/rpd/ncn051.
[26] Ainsbury E, Badie C, Barnard S, et al. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans-joint RENEB and EURADOS inter-laboratory comparisons[J]. Int J Radiat Biol, 2017, 93(1):99-109. DOI:10.1080/09553002.2016.1206233.