[1] Heron DE, Simth RP, Andrade RS. Advancers in image-guided radiation therapy-the role of PET-CT. Med Dosim, 2006, 31(1):3-11.
[2] Van TinterenH, Hoekstra, OS, Smit EF, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer:the PLUS multicentre randomized trial. Lancet, 2002, 359(9315):1388-1393.
[3] Van Westreenen HL, Heeren PA, Van DHM, et al. Positron emission tomography with F-18-fluorodeoxyglucose in a combined staging strategy of esophageal cancer prevents nnnecessary surgical exploraions. J. Gastrointest. Surg, 2005, 9(1):54-61.
[4] Radan L, Ben-Haim S, Bar-Shalom R, et al. The role of FDG-PETCT in suspected reeurrence of breast cancer. Cancer, 2006, 107(11):2545-2551.
[5] Huebner RH, Park KC, Shepherd JE, et al. A meta-analysis of the literature for whole-body FDG PET deteetion of reeurrent colorectal cancer. J Nucl Ned, 2000, 41(7):1177-1189.
[6] Dizendorf EV, Baumert BC, Von Sehulthess GK, et al. Impact of whole-body 18F-FDG PET on staging and managing patients for radiation therapy. J Nucl Med, 2003, 44(1):24-29.
[7] Ciernik IF, Dizendorf E, Baumert BG, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET-CT):a feasibility study. Int J Radiat Orxcol Biol Phys, 2003, 57(3):853-863.
[8] Mourean-Zabotto L, Touboul E, Lerouge D, et al. Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int J Radiat Oncol Biol Phys, 2005, 63(2):340-345.
[9] Zheng XK, Chen LH, Wang QS, et al. Influence of[18F] fluorodeoxyglueose positron emission tomography on salvage trealment decision making for locally persistent nasopharyneal carcinoma. Int J Radiat Oncnl Biol Phys, 2006, 65(4):1020-1025.
[10] Deniaud-Alexandre E, Touboal E, Lerouge D, et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. IntJ Radiat Oncol Biol Phys, 2005, 63(5):1432-1441.
[11] Leong T, Everitt C, Yuen K, et al. A prospective study to evaluale the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer. Radiother Oncol, 2006, 78(3):254-261.
[12] Steenbakkers R J, Duppen JC, Fitton I, et al. Reduction of observer variation using matched CT-PET for lung cancer delineation:A three-dimensinnal analysis. Int J Radiat Oneol Biol Phys, 2006, 64(2):435-448.
[13] Paulino AC, Koshy M, Howell R, et al. Comparison of CT-and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys, 2005, 61(5):1385-1392.
[14] VespriniD, UngY, Kamra J, et al.The Addition of 18-fluorodeoxyglueose positron emission tomography (FDG-PET) to CT based radiotherapy planning of carcinoma of the esophagus decreases both the intra and interobserver variability of GTV delineation. Int J Radiat Oncol Biol Phys, 2006, 66(3,suppl):S299-S300.
[15] Riegel AC, Berson AM, Destian S, et al. Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET-CT fusion. Inl J Radial Oncol Biol Phys, 2006, 65(3):726-732.
[16] Bradley J, Thorstad WL, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys, 2004, 59(1):78-86.
[17] Grosu AL, Weber WA, Astner ST, et al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys, 2006, 66(2):339-344.