[1] Wei WQ, Zeng HM, Zheng RS, et al.  Cancer registration in China and its role in cancer prevention and control[J]. Lancet Oncol, 2020, 21(7): e342-e349.   doi: 10.1016/S1470-2045(20)30073-5
[2] Cao W, Chen HD, Yu YW, et al.  Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791.   doi: 10.1097/CM9.0000000000001474
[3] Zamorano JL, Lancellotti P, Rodriguez Muñoz D, et al.  2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2016, 37(36): 2768-2801.   doi: 10.1093/eurheartj/ehw211
[4] Armenian SH, Xu LF, Ky B, et al.  Cardiovascular disease among survivors of adult-onset cancer: a community-based retrospective cohort study[J]. J Clin Oncol, 2016, 34(10): 1122-1130.   doi: 10.1200/JCO.2015.64.0409
[5]

Alexandre J, Cautela J, Ederhy S, et al. Cardiovascular toxicity related to cancer treatment: a pragmatic approach to the American and European cardio-oncology guidelines[J/OL]. J Am Heart Assoc, 2020, 9(18): e018403[2022-01-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727003. DOI: 10.1161/JAHA.120.018403.

[6] Totzeck M, Schuler M, Stuschke M, et al.  Cardio-oncology-strategies for management of cancer-therapy related cardiovascular disease[J]. Int J Cardiol, 2019, 280: 163-175.   doi: 10.1016/j.ijcard.2019.01.038
[7] 王跃涛.  重视核素心脏显像在监测肿瘤放化疗所致心脏毒性中的应用[J]. 中华核医学与分子影像杂志, 2019, 39(10): 577-580.   doi: 10.3760/cma.j.issn.2095-2848.2019.10.001
Wang YT.  Emphasis on the application of radionuclide cardiac imaging in monitoring cardiotoxicity induced by radiotherapy and chemotherapy[J]. Chin J Nucl Med Mol Imaging, 2019, 39(10): 577-580.   doi: 10.3760/cma.j.issn.2095-2848.2019.10.001
[8] Plana JC, Galderisi M, Barac A, et al.  Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. J Am Soc Echocardiogr, 2014, 27(9): 911-939.   doi: 10.1016/j.echo.2014.07.012
[9] Dreyfuss AD, Bravo PE, Koumenis C, et al.  Precision cardio-oncology[J]. J Nucl Med, 2019, 60(4): 443-450.   doi: 10.2967/jnumed.118.220137
[10] Mahabadi AA, Rischpler C.  Cardiovascular imaging in cardio-oncology[J]. J Thorac Dis, 2018, 10(Suppl 35): S4351-4366.   doi: 10.21037/jtd.2018.10.92
[11] Čelutkienė J, Pudil R, López-Fernández T, et al.  Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC)[J]. Eur J Heart Fail, 2020, 22(9): 1504-1524.   doi: 10.1002/ejhf.1957
[12] Kahanda MG, Hanson CA, Patterson B, et al.  Nuclear cardio-oncology: from its foundation to its future[J]. J Nucl Cardiol, 2020, 27(2): 511-518.   doi: 10.1007/s12350-019-01655-6
[13] Schwartz RG, Mckenzie WB, Alexander J, et al.  Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography[J]. Am J Med, 1987, 82(6): 1109-1118.   doi: 10.1016/0002-9343(87)90212-9
[14] Fatima N, Zaman MU, Hashmi A, et al.  Assessing adriamycin-induced early cardiotoxicity by estimating left ventricular ejection fraction using technetium-99m multiple-gated acquisition scan and echocardiography[J]. Nucl Med Commun, 2011, 32(5): 381-385.   doi: 10.1097/MNM.0b013e328343ceb9
[15] Rischpler C, Nekolla SG, Dregely I, et al.  Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects[J]. J Nucl Med, 2013, 54(3): 402-415.   doi: 10.2967/jnumed.112.105353
[16] 中华医学会核医学分会, 中华医学会心血管病学分会.  核素心肌显像临床应用指南(2018)[J]. 中华心血管病杂志, 2019, 47(7): 519-527.   doi: 10.3760/cma.j.issn.0253-3758.2019.07.003
Society of Nuclear Medicine of Chinese Medical Association, Society of Cardiology of Chinese Medical Association.  Guideline for the clinical use of myocardial radionuclide imaging (2018)[J]. Chin J Cardiol, 2019, 47(7): 519-527.   doi: 10.3760/cma.j.issn.0253-3758.2019.07.003
[17] Alvarez JA, Russell RR.  Cardio-oncology: the nuclear option[J]. Curr Cardiol Rep, 2017, 19(4): 31-.   doi: 10.1007/s11886-017-0844-z
[18] Jaworski C, Mariani JA, Wheeler G, et al.  Cardiac complications of thoracic irradiation[J]. J Am Coll Cardiol, 2013, 61(23): 2319-2328.   doi: 10.1016/j.jacc.2013.01.090
[19] Koene RJ, Prizment AE, Blaes A, et al.  Shared risk factors in cardiovascular disease and cancer[J]. Circulation, 2016, 133(11): 1104-1114.   doi: 10.1161/CIRCULATIONAHA.115.020406
[20] Klein R, Celiker-Guler E, Rotstein BH, et al.  PET and SPECT tracers for myocardial perfusion imaging[J]. Semin Nucl Med, 2020, 50(3): 208-218.   doi: 10.1053/j.semnuclmed.2020.02.016
[21] Lind PA, Pagnanelli R, Marks LB, et al.  Myocardial perfusion changes in patients irradiated for left-sided breast cancer and correlation with coronary artery distribution[J]. Int J Radiat Oncol Biol Phys, 2003, 55(4): 914-920.   doi: 10.1016/s0360-3016(02)04156-1
[22] Gayed IW, Liu HH, Yusuf SW, et al.  The prevalence of myocardial ischemia after concurrent chemoradiation therapy as detected by gated myocardial perfusion imaging in patients with esophageal cancer[J]. J Nucl Med, 2006, 47(11): 1756-1762.
[23] Gould KL, Johnson NP, Bateman TM, et al.  Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making[J]. J Am Coll Cardiol, 2013, 62(18): 1639-1653.   doi: 10.1016/j.jacc.2013.07.076
[24] Löffler AI, Bourque JM.  Coronary microvascular dysfunction, microvascular angina, and management[J]. Curr Cardiol Rep, 2016, 18(1): 1-.   doi: 10.1007/s11886-015-0682-9
[25] Katoh M, Takeda N, Arimoto T, et al.  Bevacizumab-related microvascular angina and its management with nicorandil[J]. Int Heart J, 2017, 58(5): 803-805.   doi: 10.1536/ihj.16-537
[26] Song JB, Yan R, Wu ZF, et al.  13N-ammonia PET/CT detection of myocardial perfusion abnormalities in beagle dogs after local heart irradiation[J]. J Nucl Med, 2017, 58(4): 605-610.   doi: 10.2967/jnumed.116.179697
[27] Żyromska A, Małkowski B, Wiśniewski T, et al.  15O-H2O PET/CT as a tool for the quantitative assessment of early post-radiotherapy changes of heart perfusion in breast carcinoma patients[J]. Br J Radiol, 2018, 91(1088): 20170653-.   doi: 10.1259/bjr.20170653
[28] McCluskey SP, Haslop A, Coello C, et al.  Imaging of chemotherapy-induced acute cardiotoxicity with 18F-labeled lipophilic cations[J]. J Nucl Med, 2019, 60(12): 1750-1756.   doi: 10.2967/jnumed.119.226787
[29] Sen F, Yildiz I, Basaran M, et al.  Impaired coronary flow reserve in metastatic cancer patients treated with sunitinib[J]. J BUON, 2013, 18(3): 775-781.
[30] Soufer A, Liu C, Henry ML, et al.  Nuclear cardiology in the context of multimodality imaging to detect cardiac toxicity from cancer therapeutics: established and emerging methods[J]. J Nucl Cardiol, 2020, 27(4): 1210-1224.   doi: 10.1007/s12350-019-01671-6
[31] Ghzally Y, Imanli H, Smith M, et al.  Metabolic scar assessment with 18F-FDG PET: correlation to ischemic ventricular tachycardia substrate and successful ablation sites[J]. J Nucl Med, 2021, 62(11): 1591-1598.   doi: 10.2967/jnumed.120.246413
[32] Yan R, Song JB, Wu ZF, et al.  Detection of myocardial metabolic abnormalities by 18F-FDG PET/CT and corresponding pathological changes in beagles with local heart irradiation[J]. Korean J Radiol, 2015, 16(4): 919-928.   doi: 10.3348/kjr.2015.16.4.919
[33]

O'farrell AC, Evans R, Silvola JMU, et al. A novel positron emission tomography (PET) approach to monitor cardiac metabolic pathway remodeling in response to sunitinib malate[J/OL]. PLoS One, 2017, 12(1): e0169964[2022-01-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5271313. DOI: 10.1371/journal.pone.0169964.

[34]

Sourdon J, Lager F, Viel T, et al. Cardiac metabolic deregulation induced by the tyrosine kinase receptor inhibitor sunitinib is rescued by endothelin receptor antagonism[J/OL]. Theranostics, 2017, 7(11): 2757−2774[2022-01-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562214. DOI: 10.7150/thno.19551.

[35] Gorla AKR, Sood A, Prakash G, et al.  Substantial increase in myocardial FDG uptake on interim PET/CT may be an early sign of adriamycin-induced cardiotoxicity[J]. Clin Nucl Med, 2016, 41(6): 462-463.   doi: 10.1097/RLU.0000000000001194
[36]

Bauckneht M, Morbelli S, Fiz F, et al. A score-based approach to 18F-FDG PET images as a tool to describe metabolic predictors of myocardial doxorubicin susceptibility[J/OL]. Diagnostics (Basel), 2017, 7(4): 57[2022-01-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745393. DOI: 10.3390/diagnostics7040057.

[37] Kim J, Cho SG, Kang SR, et al.  Association between FDG uptake in the right ventricular myocardium and cancer therapy-induced cardiotoxicity[J]. J Nucl Cardiol, 2020, 27(6): 2154-2163.   doi: 10.1007/s12350-019-01617-y
[38] Bauckneht M, Ferrarazzo G, Fiz F, et al.  Doxorubicin effect on myocardial metabolism as a prerequisite for subsequent development of cardiac toxicity: a translational 18F-FDG PET/CT observation[J]. J Nucl Med, 2017, 58(10): 1638-1645.   doi: 10.2967/jnumed.117.191122
[39] Werner RA, Wakabayashi H, Bauer J, et al.  Longitudinal 18F-FDG PET imaging in a rat model of autoimmune myocarditis[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(4): 467-474.   doi: 10.1093/ehjci/jey119
[40] Estorch M, Carrió I, Berná L, et al.  Indium-111-antimyosin scintigraphy after doxorubicin therapy in patients with advanced breast cancer[J]. J Nucl Med, 1990, 31(12): 1965-1969.
[41] Guimarães SL, Brandão SC, Andrade LR, et al.  Cardiac sympathetic hyperactivity after chemotherapy: early sign of cardiotoxicity?[J]. Arq Bras Cardiol, 2015, 105(3): 228-234.   doi: 10.5935/abc.20150075
[42] Carrió I, Cowie MR, Yamazaki J, et al.  Cardiac sympathetic imaging with mIBG in heart failure[J]. JACC Cardiovasc Imaging, 2010, 3(1): 92-100.   doi: 10.1016/j.jcmg.2009.07.014
[43] Dos Santos MJ, Da Rocha ET, Verberne HJ, et al.  Assessment of late anthracycline-induced cardiotoxicity by 123I-mIBG cardiac scintigraphy in patients treated during childhood and adolescence[J]. J Nucl Cardiol, 2017, 24(1): 256-264.   doi: 10.1007/s12350-015-0309-y
[44] Gabrielson KL, Mok GSP, Nimmagadda S, et al.  Detection of dose response in chronic doxorubicin-mediated cell death with cardiac technetium 99m annexin V single-photon emission computed tomography[J]. Mol Imaging, 2008, 7(3): 132-138.   doi: 10.2310/7290.2008.00015
[45]

Boutagy NE, Wu J, Cai ZX, et al. In vivo reactive oxygen species detection with a novel positron emission tomography tracer, 18F-DHMT, allows for early detection of anthracycline-induced cardiotoxicity in rodents[J/OL]. JACC Basic Transl Sci, 2018, 3(3): 378−390[2022-01-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058999. DOI: 10.1016/j.jacbts.2018.02.003.