[1] Singh SS, Sarma JARP, Narasu L, et al.  A review on PARP1 inhibitors: pharmacophore modeling, virtual and biological screening studies to identify novel PARP1 inhibitors[J]. Curr Top Med Chem, 2014, 14(17): 2020-2030.   doi: 10.2174/1568026614666140929152123
[2] Alemasova EE, Lavrik OI.  Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins[J]. Nucleic Acids Res, 2019, 47(8): 3811-3827.   doi: 10.1093/nar/gkz120
[3] Rajawat J, Shukla N, Mishra DP.  Therapeutic targeting of poly(ADP-Ribose) polymerase-1(PARP1) in cancer: current developments, therapeutic strategies, and future opportunities[J]. Med Res Rev, 2017, 37(6): 1461-1491.   doi: 10.1002/med.21442
[4] Engbrecht M, Mangerich A.  The nucleolus and PARP1 in cancer biology[J]. Cancers (Basel), 2020, 12(7): 1813-.   doi: 10.3390/cancers12071813
[5] Ciccarone F, Zampieri M, Caiafa P.  PARP1 orchestrates epigenetic events setting up chromatin domains[J]. Semin Cell Dev Biol, 2017, 63: 123-134.   doi: 10.1016/j.semcdb.2016.11.010
[6] Keung MYT, Wu YY, Vadgama JV.  PARP inhibitors as a therapeutic agent for homologous recombination deficiency in breast cancers[J]. J Clin Med, 2019, 8(4): 435-.   doi: 10.3390/jcm8040435
[7] Chaudhuri AR, Nussenzweig A.  The multifaceted roles of PARP1 in DNA repair and chromatin remodelling[J]. Nat Rev Mol Cell Biol, 2017, 18(10): 610-621.   doi: 10.1038/nrm.2017.53
[8] Pascal JM.  The comings and goings of PARP-1 in response to DNA damage[J]. DNA Repair(Amst), 2018, 71: 177-182.   doi: 10.1016/j.dnarep.2018.08.022
[9] Bryant HE, Schultz N, Thomas HD, et al.  Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase[J]. Nature, 2005, 434(7035): 913-917.   doi: 10.1038/nature03443
[10] Farmer H, McCabe N, Lord CJ, et al.  Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy[J]. Nature, 2005, 434(7035): 917-921.   doi: 10.1038/nature03445
[11]

Majuelos-Melguizo J, Rodríguez MI, López-Jiménez L, et al. PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma[J/OL]. Oncotarget, 2015, 6(7): 4790−4803[2019-10-18]. https://www.oncotarget.com/article/2993/text. DOI: 10.18632/oncotarget.2993.

[12] Ahel D, Horejsi Z, Wiechens N, et al.  Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1[J]. Science, 2009, 325(5945): 1240-1243.   doi: 10.1126/science.1177321
[13]

Engbrecht M, Mangerich A. The nucleolus and PARP1 in cancer biology[J/OL]. Cancers(Basel), 2020, 12(7): 1813[2019-10-18]. https://www.mdpi.com/2072-6694/12/7/1813. DOI: 10.3390/cancers12071813.

[14]

Pommier Y, O'Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms ofaction[J]. Sci Transl Med, 2016, 8(362): 362ps17[2019-10-18]. https://stm.sciencemag.org/content/8/362/362ps17.short. DOI: 10.1126/scitranslmed.aaf9246.

[15] Veuger SJ, Curtin NJ, Richardson CJ, et al.  Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and Poly(ADP-ribose) polymerase-1[J]. Cancer Res, 2003, 63(18): 6008-6015.
[16] Powell C, Mikropoulos C, Kaye SB, et al.  Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers[J]. Cancer Treat Rev, 2010, 36(7): 566-575.   doi: 10.1016/j.ctrv.2010.03.003
[17] Jain PG, Patel BD.  Medicinal chemistry approaches of poly ADP-ribose polymerase 1 (PARP1) inhibitors as anticancer agents—A recent update[J]. Eur J Med Chem, 2019, 165: 198-215.   doi: 10.1016/j.ejmech.2019.01.024
[18] Löser DA, Shibata A, Shibata AK, et al.  Sensitization to radiation and alkylating agents by inhibitors of Poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair[J]. Mol Cancer Ther, 2010, 9(6): 1775-1787.   doi: 10.1158/1535-7163.MCT-09-1027
[19]

Bridges KA, Toniatti C, Buser CA, et al. Niraparib (MK-4827), a novel poly(ADP-ribose) polymerase inhibitor, radiosensitizes human lung and breast cancer cells[J/OL]. Oncotarget, 2014, 5(13): 5076−5086[2019-10-18]. https://www.oncotarget.com/article/2083/text. DOI: 10.18632/oncotarget.2083.

[20] Liu C, Gross N, Li YS, et al.  PARP inhibitor olaparib increases the sensitization to radiotherapy in FaDu cells[J]. J Cell Mod MeD, 2020, 24(4): 2444-2450.   doi: 10.1111/jcmm.14929
[21] Oei AL, Ahire VR, van Leeuwen CM, et al.  Enhancing radiosensitisation of BRCA2-proficient and BRCA2-deficient cell lines with hyperthermia and PARP1-i[J]. Int J Hyperthermia, 2018, 34(1): 39-48.   doi: 10.1080/02656736.2017.1324642
[22] Dungey FA, Löser DA, Chalmers AJ.  Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-ribose) polymerase: mechanisms and therapeutic potential[J]. Int J Radiat Oncol Biology Phys, 2008, 72(4): 1188-1197.   doi: 10.1016/j.ijrobp.2008.07.031
[23] Godon C, Cordelières FP, Biard D, et al.  PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility[J]. Nucleic Acids Res, 2008, 36(13): 4454-4464.   doi: 10.1093/nar/gkn403
[24] Kötter A, Cornils K, Borgmann K, et al.  Inhibition of PARP1-dependent end-joining contributes to olaparib-mediated radiosensitization in tumor cells[J]. Mol Oncol, 2014, 8(8): 1616-1625.   doi: 10.1016/j.molonc.2014.06.008
[25] Mansour WY, Borgmann K, Petersen C, et al.  The absence of Ku but not defects in classical non-homologous end-joining is required to trigger PARP1-dependent end-joining[J]. DNA Repair(Amst), 2013, 12(12): 1134-1142.   doi: 10.1016/j.dnarep.2013.10.005
[26] Oing C, Tennstedt P, Simon R, et al.  BCL2-overexpressing prostate cancer cells rely on PARP1-dependent end-joining and are sensitive to combined PARP inhibitor and radiation therapy[J]. Cancer Lett, 2018, 423: 60-70.   doi: 10.1016/j.canlet.2018.03.007
[27] Barreto-Andrade JC, Efimova EV, Mauceri HJ, et al.  Response of human prostate cancer cells and tumors to combining PARP inhibition with ionizing radiation[J]. Mol Cancer Ther, 2011, 10(7): 1185-1193.   doi: 10.1158/1535-7163.MCT-11-0061
[28] Alotaibi M, Sharma K, Saleh T, et al.  Radiosensitization by PARP inhibition in DNA repair proficient and deficient tumor cells: proliferative recovery in senescent cells[J]. Radiat Res, 2016, 185(3): 229-245.   doi: 10.1667/RR14202.1
[29] Mangoni M, Sottili M, Salvatore G, et al.  Enhancement of soft tissue sarcoma cell radiosensitivity by poly(ADP-ribose) polymerase-1 inhibitors[J]. Radiat Res, 2018, 190(5): 464-472.   doi: 10.1667/RR15035.1
[30] Li S, Cui ZL, Meng XF.  Knockdown of PARP-1 inhibits proliferation and ERK signals, increasing drug sensitivity in osteosarcoma U2OS cells[J]. Oncol Res, 2016, 24(4): 279-286.   doi: 10.3727/096504016X14666990347554
[31] Vance S, Liu E, Zhao LL, et al.  Selective radiosensitization of p53 mutant pancreatic cancer cells by combined inhibition of Chk1 and PARP1[J]. Cell Cycle, 2011, 10(24): 4321-4329.   doi: 10.4161/cc.10.24.18661
[32] Karnak D, Engelke CG, Parsels LA, et al.  Combined inhibition of Wee1 and PARP1/2 for radiosensitization in pancreatic cancer[J]. Clin Cancer Res, 2014, 20(19): 5085-5096.   doi: 10.1158/1078-0432.ccr-14-1038
[33] Azad A, Bukczynska P, Jackson S, et al.  Co-targeting deoxyribonucleic acid–dependent protein kinase and poly(adenosine diphosphate-ribose) polymerase-1 promotes accelerated senescence of irradiated cancer cells[J]. Int J Radiat Oncol Biol Phys, 2014, 88(2): 385-394.   doi: 10.1016/j.ijrobp.2013.10.043
[34] Zhou ZR, Zhu XD, Zhao W, et al.  Poly(ADP-ribose) polymerase-1 regulates the mechanism of irradiation-induced CNE-2 human nasopharyngeal carcinoma cell autophagy and inhibition of autophagy contributes to the radiation sensitization of CNE-2 cells[J]. Oncol Rep, 2013, 29(6): 2498-2506.   doi: 10.3892/or.2013.2382
[35] Chen ZT, Zhao W, Qu S, et al.  PARP-1 promotes autophagy via the AMPK/mTOR pathway in CNE-2 human nasopharyngeal carcinoma cells following ionizing radiation, while inhibition of autophagy contributes to the radiation sensitization of CNE-2 cells[J]. Mol Med Rep, 2015, 12(2): 1868-1876.   doi: 10.3892/mmr.2015.3604
[36] 王维, 段碧霞, 曾丽.  PARP抑制剂对Lewis肺癌细胞及移植瘤放疗增敏作用及其机制[J]. 中国肺癌杂志, 2016, 19(1): 16-23.   doi: 10.3779/j.issn.1009-3419.2016.01.02
Wang W, Duan BX, Zeng L.  Effect and mechanism of radiosensitization of poly (ADP-ribose) polymerase inhibitor on lewis cells and xenografts[J]. Chin J Lung Cancer, 2016, 19(1): 16-23.   doi: 10.3779/j.issn.1009-3419.2016.01.02
[37] 杨莹, 王静, 陆晓媛.  PARP抑制剂veliparib对Ishikawa子宫内膜癌细胞放疗增敏作用[J]. 徐州医科大学学报, 2018, 38(2): 101-105.   doi: 10.3969/j.issn.1000-2065.2018.02.008
Yang Y, Wang J, Lu XY.  The radiosensitization effect of veliparib, a PARP inhibitor, on Ishikawa endometrial cancer cells[J]. Acta Academiae Medicine XuZhou, 2018, 38(2): 101-105.   doi: 10.3969/j.issn.1000-2065.2018.02.008
[38] Liu Q, Gheorghiu L, Drumm M, et al.  PARP-1 inhibition with or without ionizing radiation confers reactive oxygen species-mediated cytotoxicity preferentially to cancer cells with mutant TP53[J]. Oncogene, 2018, 37(21): 2793-2805.   doi: 10.1038/s41388-018-0130-6
[39] Mao YZ, Huang X, Shuang ZY, et al.  PARP inhibitor olaparib sensitizes cholangiocarcinoma cells to radiation[J]. Cancer Med, 2018, 7(4): 1285-1296.   doi: 10.1002/cam4.1318