[1] Hamers-Casterman C, Atarhouch T, Muyldermans S, et al.  Naturally occurring antibodies devoid of light chains[J]. Nature, 1993, 363(6428): 446-448.   doi: 10.1038/363446a0
[2] Muyldermans S.  Nanobodies: natural single-domain antibodies[J]. Annu Rev Biochem, 2013, 82: 775-797.   doi: 10.1146/annurev-biochem-063011-092449
[3]

Bao GF, Tang M, Zhao J, et al. Nanobody: a promising toolkit for molecular imaging and disease therapy[J/OL]. EJNMMI Res, 2021, 11(1): 6[2021-10-10]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-021-00750-5. DOI: 10.1186/s13550-021-00750-5.

[4] Verhaar ER, Woodham AW, Ploegh HL.  Nanobodies in cancer[J]. Semin Immunol, 2021, 52: 101425-.   doi: 10.1016/j.smim.2020.101425
[5] Keyaerts M, Xavier C, Heemskerk J, et al.  Phase Ⅰ study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma[J]. J Nucl Med, 2016, 57(1): 27-33.   doi: 10.2967/jnumed.115.162024
[6] Xing Y, Chand G, Liu CC, et al.  Early phase Ⅰ study of a 99mTc-labeled anti-programmed death ligand-1 (PD-L1) single-domain antibody in SPECT/CT assessment of PD-L1 expression in non-small cell lung cancer[J]. J Nucl Med, 2019, 60(9): 1213-1220.   doi: 10.2967/jnumed.118.224170
[7] Vaidyanathan G, McDougald D, Choi J, et al.  Preclinical evaluation of 18F-labeled anti-HER2 nanobody conjugates for imaging HER2 receptor expression by immuno-PET[J]. J Nucl Med, 2016, 57(6): 967-973.   doi: 10.2967/jnumed.115.171306
[8] Wang C, Chen YM, Hou YN, et al.  ImmunoPET imaging of multiple myeloma with [68Ga]Ga-NOTA-Nb1053[J]. Eur J Nucl Med Mol Imaging, 2021, 48(9): 2749-2760.   doi: 10.1007/s00259-021-05218-1
[9] Shi SX, Goel S, Lan XL, et al.  ImmunoPET of CD38 with a radiolabeled nanobody: promising for clinical translation[J]. Eur J Nucl Med Mol Imaging, 2021, 48(9): 2683-2686.   doi: 10.1007/s00259-021-05329-9
[10] Movahedi K, Schoonooghe S, Laoui D, et al.  Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages[J]. Cancer Res, 2012, 72(16): 4165-4177.   doi: 10.1158/0008-5472.CAN-11-2994
[11] Blykers A, Schoonooghe S, Xavier C, et al.  PET imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18F-radiolabeled camelid single-domain antibody fragments[J]. J Nucl Med, 2015, 56(8): 1265-1271.   doi: 10.2967/jnumed.115.156828
[12] Xavier C, Blykers A, Laoui D, et al.  Clinical translation of [68Ga]Ga-NOTA-anti-MMR-sdAb for PET/CT imaging of protumorigenic macrophages[J]. Mol Imaging Biol, 2019, 21(5): 898-906.   doi: 10.1007/s11307-018-01302-5
[13] Topalian SL, Hodi FS, Brahmer JR, et al.  Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 2443-2454.   doi: 10.1056/NEJMoa1200690
[14] Bensch F, Van Der Veen EL, Lub-De Hooge MN, et al.  89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer[J]. Nat Med, 2018, 24(12): 1852-1858.   doi: 10.1038/s41591-018-0255-8
[15] Liu QZ, Jiang L, Li K, et al.  Immuno-PET imaging of 68Ga-labeled nanobody Nb109 for dynamic monitoring the PD-L1 expression in cancers[J]. Cancer Immunol Immunother, 2021, 70(6): 1721-1733.   doi: 10.1007/s00262-020-02818-y
[16] Lv GC, Sun XR, Qiu L, et al.  PET imaging of tumor PD-L1 expression with a highly specific nonblocking single-domain antibody[J]. J Nucl Med, 2020, 61(1): 117-122.   doi: 10.2967/jnumed.119.226712
[17] Cox TR.  The matrix in cancer[J]. Nat Rev Cancer, 2021, 21(4): 217-238.   doi: 10.1038/s41568-020-00329-7
[18] Jailkhani N, Ingram JR, Rashidian M, et al.  Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix[J]. Proc Natl Acad Sci U S A, 2019, 116(28): 14181-14190.   doi: 10.1073/pnas.1817442116
[19] Pandit-Taskar N, Postow MA, Hellmann MD, et al.  First-in-humans imaging with 89Zr-Df-IAB22M2C Anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting[J]. J Nucl Med, 2020, 61(4): 512-519.   doi: 10.2967/jnumed.119.229781
[20] Farwell MD, Gamache RF, Babazada H, et al.  CD8-targeted PET imaging of tumor-infiltrating T cells in patients with cancer: a phase Ⅰ first-in-humans study of 89Zr-Df-IAB22M2C, a radiolabeled anti-CD8 minibody[J]. J Nucl Med, 2022, 63(5): 720-726.   doi: 10.2967/jnumed.121.262485
[21] Griessinger CM, Olafsen T, Mascioni A, et al.  The PET-tracer 89Zr-Df-IAB22M2C enables monitoring of intratumoral CD8 T-cell infiltrates in tumor-bearing humanized mice after T-cell bispecific antibody treatment[J]. Cancer Res, 2020, 80(13): 2903-2913.   doi: 10.1158/0008-5472.Can-19-3269
[22] Rashidian M, Ingram JR, Dougan M, et al.  Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells[J]. J Exp Med, 2017, 214(8): 2243-2255.   doi: 10.1084/jem.20161950
[23]

Zhao HT, Wang C, Yang YL, et al. ImmunoPET imaging of human CD8+ T cells with novel 68Ga-labeled nanobody companion diagnostic agents[J/OL]. J Nanobiotechnology, 2021, 19(1): 42[2021-10-10]. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-021-00785-9. DOI: 10.1186/s12951-021-00785-9.

[24] Rosenfeld L, Sananes A, Zur Y, et al.  Nanobodies targeting prostate-specific membrane antigen for the imaging and therapy of prostate cancer[J]. J Med Chem, 2020, 63(14): 7601-7615.   doi: 10.1021/acs.jmedchem.0c00418
[25] Chatalic KLS, Veldhoven-Zweistra J, Bolkestein M, et al.  A novel ¹¹¹In-labeled anti-prostate-specific membrane antigen nanobody for targeted SPECT/CT imaging of prostate cancer[J]. J Nucl Med, 2015, 56(7): 1094-1099.   doi: 10.2967/jnumed.115.156729
[26] Lemaire M, D'Huyvetter M, Lahoutte T, et al.  Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic nanobodies[J]. Leukemia, 2014, 28(2): 444-447.   doi: 10.1038/leu.2013.292
[27] Wang H, Meng AM, Li SH, et al.  A nanobody targeting carcinoembryonic antigen as a promising molecular probe for non-small cell lung cancer[J]. Mol Med Rep, 2017, 16(1): 625-630.   doi: 10.3892/mmr.2017.6677
[28] Vosjan MJWD, Perk LR, Roovers RC, et al.  Facile labelling of an anti-epidermal growth factor receptor Nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET[J]. Eur J Nucl Med Mol Imaging, 2011, 38(4): 753-763.   doi: 10.1007/s00259-010-1700-1
[29]

Renard E, Camps EC, Canovas C, et al. Site-specific dual-labeling of a VHH with a chelator and a photosensitizer for nuclear imaging and targeted photodynamic therapy of EGFR-positive tumors[J/OL]. Cancers (Basel), 2021, 13(3): 428[2021-10-10]. https://www.mdpi.com/2072-6694/13/3/428. DOI: 10.3390/cancers13030428.

[30] Lecocq Q, Awad RM, De Vlaeminck Y, et al.  Single-domain antibody nuclear imaging allows noninvasive quantification of LAG-3 expression by tumor-infiltrating leukocytes and predicts response of immune checkpoint blockade[J]. J Nucl Med, 2021, 62(11): 1638-1644.   doi: 10.2967/jnumed.120.258871
[31] Nix MA, Mandal K, Geng HM, et al.  Surface proteomics reveals CD72 as a target for in vitro-evolved nanobody-based CAR-T cells in KMT2A/MLL1-rearranged B-ALL[J]. Cancer Discov, 2021, 11(8): 2032-2049.   doi: 10.1158/2159-8290.CD-20-0242
[32] Kijanka M, Warnders FJ, El Khattabi M, et al.  Rapid optical imaging of human breast tumour xenografts using anti-HER2 VHHs site-directly conjugated to IRDye 800CW for image-guided surgery[J]. Eur J Nucl Med Mol Imaging, 2013, 40(11): 1718-1729.   doi: 10.1007/s00259-013-2471-2
[33]

Zhu LH, Guo YL, Wang LF, et al. Construction of ultrasonic nanobubbles carrying CAIX polypeptides to target carcinoma cells derived from various organs[J/OL]. J Nanobiotechnology, 2017, 15(1): 63[2021-10-10]. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-017-0307-0. DOI: 10.1186/s12951-017-0307-0.

[34] Rashidian M, Wang L, Edens JG, et al.  Enzyme-mediated modification of single-domain antibodies for imaging modalities with different characteristics[J]. Angew Chem Int Ed Engl, 2016, 55(2): 528-533.   doi: 10.1002/anie.201507596
[35] Ehlerding EB, Sun LY, Lan XL, et al.  Dual-targeted molecular imaging of cancer[J]. J Nucl Med, 2018, 59(3): 390-395.   doi: 10.2967/jnumed.117.199877
[36] Sikic BI, Lakhani N, Patnaik A, et al.  First-in-human, first-in-class phase Ⅰ trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers[J]. J Clin Oncol, 2019, 37(12): 946-953.   doi: 10.1200/JCO.18.02018
[37]

Ma LL, Zhu M, Gai JW, et al. Preclinical development of a novel CD47 nanobody with less toxicity and enhanced anti-cancer therapeutic potential[J/OL]. J Nanobiotechnology, 2020, 18(1): 12[2021-10-10]. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-020-0571-2. DOI: 10.1186/s12951-020-0571-2.

[38] Feng YT, Zhou ZY, McDougald D, et al.  Site-specific radioiodination of an anti-HER2 single domain antibody fragment with a residualizing prosthetic agent[J]. Nucl Med Biol, 2021, 92: 171-183.   doi: 10.1016/j.nucmedbio.2020.05.002
[39] Akizawa H, Uehara T, Arano Y.  Renal uptake and metabolism of radiopharmaceuticals derived from peptides and proteins[J]. Adv Drug Deliv Rev, 2008, 60(12): 1319-1328.   doi: 10.1016/j.addr.2008.04.005
[40] Zhou ZY, Meshaw R, Zalutsky MR, et al.  Site-specific and residualizing linker for 18F labeling with enhanced renal clearance: application to an Anti-HER2 single-domain antibody fragment[J]. J Nucl Med, 2021, 62(11): 1624-1630.   doi: 10.2967/jnumed.120.261446
[41] Zhou ZY, Devoogdt N, Zalutsky MR, et al.  An efficient method for labeling single domain antibody fragments with 18F using tetrazine- trans-cyclooctene ligation and a renal brush border enzyme-cleavable linker[J]. Bioconjug Chem, 2018, 29(12): 4090-4103.   doi: 10.1021/acs.bioconjchem.8b00699
[42] Hong HF, Zhou ZF, Zhou K, et al.  Site-specific C-terminal dinitrophenylation to reconstitute the antibody Fc functions for nanobodies[J]. Chem Sci, 2019, 10(40): 9331-9338.   doi: 10.1039/c9sc03840j
[43]

Xenaki KT, Dorrestijn B, Muns JA, et al. Homogeneous tumor targeting with a single dose of HER2-targeted albumin-binding domain-fused nanobody-drug conjugates results in long-lasting tumor remission in mice[J/OL]. Theranostics, 2021, 11(11): 5525−5538[2021-10-10]. https://www.thno.org/v11p5525.htm. DOI: 10.7150/thno.57510.

[44] Lee W, Bobba KN, Kim JY, et al.  A short PEG linker alters the in vivo pharmacokinetics of trastuzumab to yield high-contrast immuno-PET images[J]. J Mater Chem B, 2021, 9(13): 2993-2997.   doi: 10.1039/d0tb02911d
[45] Peplau E, De Rose F, Reder S, et al.  Development of a chimeric antigen-binding fragment directed against human galectin-3 and validation as an immuno-positron emission tomography tracer for the sensitive in vivo imaging of thyroid cancer[J]. Thyroid, 2020, 30(9): 1314-1326.   doi: 10.1089/thy.2019.0670
[46] Wei WJ, Rosenkrans ZT, Liu JJ, et al.  ImmunoPET: concept, design, and applications[J]. Chem Rev, 2020, 120(8): 3787-3851.   doi: 10.1021/acs.chemrev.9b00738
[47] Panikar SS, Banu N, Haramati J, et al.  Nanobodies as efficient drug-carriers: Progress and trends in chemotherapy[J]. J Control Release, 2021, 334: 389-412.   doi: 10.1016/j.jconrel.2021.05.004
[48] D'Huyvetter M, De Vos J, Caveliers V, et al.  Phase Ⅰ trial of 131I-GMIB-Anti-HER2-VHH1, a new promising candidate for HER2-targeted radionuclide therapy in breast cancer patients[J]. J Nucl Med, 2021, 62(8): 1097-1105.   doi: 10.2967/jnumed.120.255679