[1] Molthoff CF, Klabbers BM, Berkhof J, et al.  Monitoring response to radiotherapy in human squamous cell cancer bearing nude mice: comparison of 2′-deoxy-2′-〔18F〕fluoro-D-glucose(FDG)and 3′-〔18F〕fluoro-3′-deoxythymidine(FLT)[J]. Mol Imaging Biol, 2007, 9(6): 340-347.   doi: 10.1007/s11307-007-0104-5
[2] Agool A, Slart RH, Thorp KK, et al.  Effect of radiotherapy and chemotherapy on bone marrow activity: a18F-FLT-PET study[J]. Nucl Med Commun, 2011, 32(1): 17-22.   doi: 10.1097/MNM.0b013e328340798c
[3] Yue J, Chen L, Cabrera AR, et al.  Measuring tumor cell proliferation with18F-FLT PET during radiotherapy of esophageal squamous cell carcinoma: a pilot clinical study[J]. J Nucl Med, 2010, 51(4): 528-534.   doi: 10.2967/jnumed.109.072124
[4] Menda Y, Laura L, Dornfeld K, et al.  Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine(18F-FLT)in head and neck cancer patients before and early after initiation of chemoradiation therapy[J]. J Nucl Med, 2009, 50(7): 1028-1035.   doi: 10.2967/jnumed.108.058495
[5] Song SL, Liu JJ, Huang G, et al.  Changes in 18F-FDG uptake within minutes after chemotherapy in a rabbit VX2 tumor model[J]. J Nucl Med, 2008, 49(2): 303-309.   doi: 10.2967/jnumed.107.044206
[6] Brepoels L, Stroobants S, Verhoef G, et al.  18F-FDG and18F-FLT uptake early after cyclophosphamide and mTOR inhibition in an experimental lymphoma model[J]. J Nucl Med, 2009, 50(7): 1102-1109.   doi: 10.2967/jnumed.109.062208
[7] Dose SJ, Bader M, Jenicke L, et al.  Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET[J]. J Nucl Med, 2005, 46(7): 1144-1150.
[8] Benz MR, Evilevitch V, Allen-Auerbach MS, et al.  Treatment monitoring by 18F-FDG PET/CT in patients with sarcomas: interobserver variability of quantitative parameters in treatment-induced changes in histopathologically responding and nonresponding tumors[J]. J Nucl Med, 2008, 49(7): 1038-1046.   doi: 10.2967/jnumed.107.050187
[9] Sugiyama M, Sakahara H, Sato K, et al.  Evaluation of 3′-deoxy-3′-18F-Fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice[J]. J Nucl Med, 2004, 45(10): 1754-1758.
[10] Waldherr C, Mellinghoff IK, Tran C, et al.  Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18F-fluorothymidine PET[J]. J Nucl Med, 2005, 46(1): 114-120.
[11] Oyama N, Ponde DE, Dence C, et al.  Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation[J]. J Nucl Med, 2004, 45(3): 519-525.
[12] Pan MH, Huang SC, Liao YP, et al.  FLT-PET imaging of radiation responses in murine tumors[J]. Mol Imaging Biol, 2008, 10(6): 325-334.   doi: 10.1007/s11307-008-0158-z
[13] Shields AF, Grierson JR, Dohmen BM, et al.  Imaging proliferation invivowith[F-18]FLTandpositron emission tomography[J]. Nat Med, 1998, 4(11): 1334-1336.   doi: 10.1038/3337
[14] Turcotte E, Wiens LW, Grierson JR, et al.  Toxicology evaluation of radiotracer doses of 3'-deoxy-3'-[18F]fluorothymidine(18F-FLT)for human PET imaging: Laboratory analysis of serial blood samples and comparison to previously investigated therapeutic FLT doses[J]. BMC Nucl Med, 2007, 7: 3-.   doi: 10.1186/1471-2385-7-3
[15] Waarde AV, Cobben DCP, Suurmeijer AJH, et al.  Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model[J]. J Nucl Med, 2004, 45(4): 695-700.
[16] Rasey JS, Grierson JR, Wiens LW, et al.  Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells[J]. J Nucl Med, 2002, 43(9): 1210-1217.
[17] Direcks WG, Berndsen SC, Proost N, et al.  [18F]FDG and[18F]FLT uptake in human breast cancer cells in relation to the effects of chemotherapy: an in vitro study[J]. Br J Cancer, 2008, 99(3): 481-487.   doi: 10.1038/sj.bjc.6604523
[18] Wang H, Liu B, Tian JH, et al.  Monitoring early responses to irradiation with dual-tracer micro-PET in dual-tumor bearing mice[J]. World J Gastroenterol, 2010, 16(43): 5416-5423.   doi: 10.3748/wjg.v16.i43.5416
[19] Withers HR, Taylor JM, Maciejewski B.  The hazard of accelerated tumor clonogen repopulation during radiotherapy[J]. Acta Oncol, 1988, 27(2): 131-146.   doi: 10.3109/02841868809090333
[20] Langen AJ, Klabbers B, Lubberink M, et al.  Reproducibility of quantitative 18F-3′-deoxy-3′-fluorothymidine measurements using positron emission tomography[J]. Eur J Nucl Med Mol Imaging, 2009, 36(3): 389-395.   doi: 10.1007/s00259-008-0960-5
[21] Muzi M, Mankoff DA, Grierson JR, et al.  Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies[J]. J Nucl Med, 2005, 46(2): 371-380.
[22] Muzi M, Vesselle H, Grierson JR, et al.  Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer[J]. J Nucl Med, 2005, 46(2): 274-282.
[23] Muzi M, Spence AM, Sullivan F, et al.  Kinetic analysis of 3′-deoxy-3′- 18F-fluorothymidinein patients with gliomas[J]. J Nucl Med, 2006, 47(10): 1612-1621.
[24] Buck AK, Halter G, Schirrmeister H, et al.  Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG[J]. J Nucl Med, 2003, 44(9): 1426-1431.
[25] Cobben DC, van der Laan BF, Maas B, et al.  18F-FLT PET for visualization of laryngeal cancer: comparison with 18F-FDG PET[J]. J Nucl Med, 2004, 45(2): 226-231.
[26] van Westreenen HL, Cobben DC, Jager PL, et al.  Comparison of 18FFLT PET and 18F-FDG PET in esophageal cancer[J]. J Nucl Med, 2005, 46(3): 400-404.
[27] Leyton J, Latigo JR, Perumal M, et al.  Early detection of tumor response to chemotherapy by 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo[J]. Cancer Res, 2005, 65(10): 4202-4210.   doi: 10.1158/0008-5472.CAN-04-4008
[28] Jensen MM, Erichsen KD, Bjorkling F, et al.  Early detection of response to experimental chemotherapeutic Top216 with[18F]FLT and[18F]FDG PET in human ovary cancer xenografts in mice[J]. PLoSONE, 2010, 5(9): e12965-.   doi: 10.1371/journal.pone.0012965
[29] Apisarnthanarax S, Alauddin MM, Mourtada F, et al.  Early detection of chemoradioresponse in esophageal carcinomaby3′-deoxy-3′-3H-fluorothymidine using preclinical tumor models[J]. Clin Cancer Res, 2006, 12(15): 4590-4597.   doi: 10.1158/1078-0432.CCR-05-2720
[30] Wang H, Zhang JM, Tian JH, et al.  Using dual-tracer PET to predict the biologic behavior of human colorectal cancer[J]. J Nucl Med, 2009, 50(11): 1857-1864.   doi: 10.2967/jnumed.109.064238
[31] Troost EG, Bussink J, Aswin L, et al.  18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors[J]. J Nucl Med, 2010, 51(6): 866-874.   doi: 10.2967/jnumed.109.069310
[32] Dittmann H, Dohmen BM, Paulsen F, et al.  [18F]FLT PET for diagnosis and staging of thoracic tumours[J]. Eur J Nucl Med Mol Imaging, 2003, 30(10): 1407-1412.   doi: 10.1007/s00259-003-1257-3
[33] Chen W, Cloughesy T, Kamdar N, et al.  Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG[J]. J Nucl Med, 2005, 46(6): 945-952.
[34] Ecke F, Herrmann K, Schmidt S, et al.  Imaging of proliferation in hepatocellular carcinoma with the in vivo marker 18F-fluorothymidine[J]. J Nucl Med, 2009, 50(9): 1441-1447.   doi: 10.2967/jnumed.109.065896
[35] Tian JH, Yang XF, Yu LJ, et al.  A Multicenter clinical trial on the diagnostic value of dual-tracer PET/CT in pulmonary lesions using 3-deoxy-3-18F-fluorothymidine and 18F-FDG[J]. J Nucl Med, 2008, 49(2): 186-194.   doi: 10.2967/jnumed.107.044966