[1]

顾蔚萍, 朱霖. 中国放射性药物发展战略研究. 北京: 原子能出版社, 2006: 16-18.

[2] 王荣福.  放射性正电子药物在肿瘤中的应用研究[J]. 实用肿瘤杂志, 2006, 21(1): 92-94.   doi: 10.3969/j.issn.1001-1692.2006.01.031
[3] Mullani NA, Herbst RS, O′Neil RG, et al.  Tumor blood flow measured by PET dynamic imaging of first-pass 18F-FDG up-take: a comparison with 15O-labeled water-measured blood flow[J]. J Nucl Med, 2008, 49(4): 517-523.   doi: 10.2967/jnumed.107.048504
[4] Ryu EK, Choe YS, Kim DH, et al.  In vitro metabolism studies of 18F-labeled 1-phenylpiperazine using mouse liver S9 fraction[J]. Nucl Med Biol, 2006, 33(2): 165-172.   doi: 10.1016/j.nucmedbio.2005.12.002
[5] Tan PZ, Baldwin RM, Van Dyck CH, et al.  Characterization of radioactive metabolites of 5-HT2A receptor PET ligand 18F-altanserin in human and rodent[J]. Nucl Med Biol, 1999, 26(6): 601-608.   doi: 10.1016/S0969-8051(99)00022-0
[6] Shetty HU, Zoghbi SS, Liow JS, et al.  Identification and regional distribution in rat brain of radiometabolites of the dopamine transporter PET radioligand 11C-PE2I[J]. Eur J Nucl Med Mol Imaging, 2007, 34(5): 667-678.   doi: 10.1007/s00259-006-0277-1
[7] YangW, MouT, PengC, etal.  Fluorine-18 labeledgalactosyl-neoglycoalbumin for imaging the hepatic asialoglycoprotein receptor[J]. Bioorg Med Chem, 2009, 17(21): 7510-7516.   doi: 10.1016/j.bmc.2009.09.017
[8] Lucatelli C, Honer M, Salazar JF, et al.  Synthesis, radiolabeling, in vitro and in vivo evaluation of 18F-FPECMO as a positron emission tomography radioligand for imaging the metabotropic glutamate receptor subtype 5[J]. Nucl Med Biol, 2009, 36(6): 613-622.   doi: 10.1016/j.nucmedbio.2009.03.005
[9] McCarron J, Zoghbi SS, Shetty HU, et al.  Synthesis and initial evaluation of 11C-(R)-RWAY in monkey—a new, simply labeled antagonist radioligand for imaging brain 5-HT1A receptors with PET[J]. Eur J Nucl Med Mol Imaging, 2007, 34(10): 1670-1682.   doi: 10.1007/s00259-007-0460-z
[10] Osman S, Lundkvist C, Pike VW, et al.  Characterisation of the appearance of radioactive metabolites in monkey and humanplasma from the 5-HT1A receptor radioligand, [carbony-11C]WAY-100635-explanation of high signal contrast in PET and an aid to biomathematical modelling[J]. Nucl Med Biol, 1998, 25(3): 215-223.   doi: 10.1016/S0969-8051(97)00206-0
[11] Watabe H, Channing MA, Der MG, et al.  Kinetic analysis of the 5-HT2A ligand 11C-MDL 100, 907[J]. J Cereb Blood Flow Metab, 2000, 20(6): 899-909.   doi: 10.1097/00004647-200006000-00002
[12] Stringer RA, Strain-Damerell C, Nicklin P, et al.  Evaluation of recombinant cytochrome P450 enzymes as an in vitro system for metabolic clearance predictions[J]. Drug Metab Dispos, 2009, 37(5): 1025-1034.   doi: 10.1124/dmd.108.024810
[13] Tang JC, Yang H, Song XY, et al.  Inhibition of cytochrome P450 enzymes by rhein in rat liver microsomes[J]. Phytother Res, 2009, 23(2): 159-164.   doi: 10.1002/ptr.2572
[14] Shaffer CL, Langer CS.  Metabolism of a 14C/3H-labeled GABAA receptor partial agonist in rat, dog and human liver microsomes: evaluation of a dual-radiolabel strategy[J]. J Pharm Biomed Anal, 2007, 43(4): 1195-1205.   doi: 10.1016/j.jpba.2006.11.022
[15] Ma Y, Kiesewetter DO, Lang L, et al.  Determination of 18FFCWAY, 18F-FP-TZTP, and their metabolites in plasma using rapid and efficient liquid-liquid and solid phase extractions[J]. Nucl Med Biol, 2003, 30(3): 233-240.   doi: 10.1016/S0969-8051(02)00452-3
[16] Hasler F, Kuznetsova OF, Krasikova RN, et al.  GMP-compliant radiosynthesis of 18F-altanserin and human plasma metabolite studies[J]. Appl Radiat Isot, 2009, 67(4): 598-601.   doi: 10.1016/j.apradiso.2008.12.007
[17] Jang DP, Lee SH, Park CW, et al.  Effects of fluoxetine on the rat brain in the forced swimming test: a 18F-FDG micro-PET imaging study[J]. Neurosci Lett, 2009, 451(1): 60-64.   doi: 10.1016/j.neulet.2008.12.024
[18] Idbaih A, Burlet A, Adle-Biassette H, et al.  Altered cerebral glucose metabolism in an animal model of diabetes insipidus: a micro-PET study[J]. Brain Res, 2007, 1158: 164-168.   doi: 10.1016/j.brainres.2007.05.016
[19] Conti PS, Bading JR, Mouton PP, et al.  In vivo measurement of cell proliferation in canine brain tumor using 11C-labeled FMAU and PET[J]. Nucl Med Biol, 2008, 35(1): 131-141.   doi: 10.1016/j.nucmedbio.2007.09.003
[20] Bading JR, Shahinian AH, Vail A, et al.  Pharmacokinetics of the thymidine analog 2′-fluoro-5-methyl-1-beta-D-arabinofura-nosyluracil(FMAU)in tumor-bearing rats[J]. Nucl Med Biol, 2004, 31(4): 407-418.   doi: 10.1016/j.nucmedbio.2004.01.001
[21] Bading JR, Shahinian AH, Bathija P, et al.  Pharmacokinetics of the thymidine analog 2′-fluoro-5-[14C]-methyl-1-β-D-arabinofuranosyluracil(14C-FMAU)in rat prostate tumor cells[J]. Nucl Med Biol, 2000, 27(4): 361-368.   doi: 10.1016/S0969-8051(00)00100-1
[22] Solon EG, Schweitzer A, Stoeckli M, et al.  Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development[J]. AAPS J, 2010, 12(1): 11-26.   doi: 10.1208/s12248-009-9158-4
[23] Dedeurwaerdere S, Gregoire MC, Vivash L, et al.  In vivo imaging characteristics of two fluorinated flumazenil radiotracers in the rat[J]. Eur J Nucl Med Mol Imaging, 2009, 36(6): 958-965.   doi: 10.1007/s00259-009-1066-4
[24] Kikuchi T, Okamura T, Zhang MR, et al.  In vivo evaluation of N-[18F]fluoroethylpiperidin-4ylmethyl acetate in rats compared with MP4A as a probe for measuring cerebral acetylcholinesteraseactivity[J]. Synapse, 2009, 64(3): 209-215.
[25] Gillings N.  A restricted access material for rapid analysis of 11C-labeled radiopharmaceuticals and their metabolites in plasma[J]. Nucl Med Biol, 2009, 36(8): 961-965.   doi: 10.1016/j.nucmedbio.2009.07.004
[26] Ma S, Zhu M.  Recent advances in applications of liquid chromatography-tandem mass spectrometry to the analysis of reactive drug metabolites[J]. Chem Biol Interact, 2009, 179(1): 25-37.   doi: 10.1016/j.cbi.2008.09.014
[27] Gray MJ, Chang D, Zhang Y, et al.  Development of liquid chromatography/mass spectrometry methods for the quantitative analysis of herbal medicine in biological fluids: a review[J]. Biomed Chromatogr, 2010, 24(1): 91-103.   doi: 10.1002/bmc.1287
[28] 乔晋萍, 韩梅, 朱霖.  Radio-LC-MS及其在放射性药物研究中的应用[J]. 质谱学报, 2008, 29(1): 60-64.
[29] Boswell CA, McQuade P, Weisman GR, et al.  Optimization of labeling and metabolite analysis of copper-64-labeled azamacrocyclic chelators by radio-LC-MS[J]. Nucl Med Biol, 2005, 32(1): 29-38.   doi: 10.1016/j.nucmedbio.2004.09.004
[30] Houle S, DaSilva JN, Wilson AA.  Imaging the 5-HT1A receptors with PET: WAY-100635 and analogues[J]. Nucl Med Biol, 2000, 27(4): 361-368.   doi: 10.1016/S0969-8051(00)00100-1
[31] Zoghbi SS, Shetty HU, Ichise M, et al.  PET imaging of the dopamine transporter with 18F-FECNT: a polar radiometabolite confounds brain radioligand measurements[J]. J Nucl Med, 2006, 47(3): 520-527.
[32] Mitterhauser M, Wadsak W, Wabnegger L, et al.  Biological evaluation of 2′-[18F]fluoroflumazenil([18F]FFMZ), a potential GABA receptor ligand for PET[J]. Nucl Med Biol, 2004, 31(2): 291-295.   doi: 10.1016/j.nucmedbio.2003.09.003
[33] Roivainen A, Nägren K, Hirvonen J, et al.  Whole-body distribution and metabolism of[N-methyl-11C](R)-1-(2-chlorophenyl)-N-(1-methylpropyl)-3-isoquinolinecarboxamide in humans; an imaging agent for in vivo assessment of peripheral benzodiazepine receptor activity with positron emission tomography[J]. Eur J Nucl Med Mol Imaging, 2009, 36(4): 671-682.   doi: 10.1007/s00259-008-1000-1
[34] Bier D, Holschbach MH, Wutz W, et al.  Metabolism of the A1 adenosine receptor positron emission tomography ligand[18F]8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine([18F]CPFPX)in rodents and humans[J]. Drug Metab Dispos, 2006, 34(4): 570-576.   doi: 10.1124/dmd.105.006411
[35] Höltke C, Law MP, Wagner S, et al.  PET-compatible endothelin receptor radioligands: synthesis and first in vitro and in vivo studies[J]. Bioorg Med Chem, 2009, 17(20): 7197-7208.   doi: 10.1016/j.bmc.2009.08.058
[36] Luurtsema G, Schuit RC, Takkenkamp K, et al.  Peripheral metabolism of 18F-FDDNP and cerebral uptake of its labelled metabolites[J]. Nucl Med Biol, 2008, 35(8): 869-874.   doi: 10.1016/j.nucmedbio.2008.09.002