[1]

Xu JY, Chen GH, Yang YJ. Exosomes: a rising star in failing hearts[J/OL]. Front Physiol, 2017, 8: 494[2021-06-21]. https://www.frontiersin.org/articles/10.3389/fphys.2017.00494/full. DOI: 10.3389/fphys.2017.00494.

[2] Bowers EC, Hassanin AAI, Ramos KS.  In vitro models of exosome biology and toxicology: new frontiers in biomedical research[J]. Toxicol in Vitro, 2020, 64: 104462-.   doi: 10.1016/j.tiv.2019.02.016
[3] Toh WS, Lai RC, Zhang B, et al.  MSC exosome works through a protein-based mechanism of action[J]. Biochem Soc Trans, 2018, 46(4): 843-853.   doi: 10.1042/BST20180079
[4]

Xu JS, Liao KL, Zhou WM. Exosomes regulate the transformation of cancer cells in cancer stem cell homeostasis[J/OL]. Stem Cells Int, 2018, 2018: 4837370[2021-06-21]. https://www.hindawi.com/journals/sci/2018/4837370. DOI: 10.1155/2018/4837370.

[5]

Xie YJ, Jia YJ, Xie CH, et al. Urinary exosomal microRNA profiling in incipient type 2 diabetic kidney disease[J/OL]. J Diabetes Res, 2017, 2017: 6978984[2021-06-21]. https://www.hindawi.com/journals/jdr/2017/6978984. DOI: 10.1155/2017/6978984.

[6]

Ho DH, Yi S, Seo H, et al. Increased DJ-1 in urine exosome of Korean males with Parkinson's disease[J/OL]. Biomed Res Int, 2014, 2014: 704678[2021-06-21]. https://www.hindawi.com/journals/bmri/2014/704678. DOI: 10.1155/2014/704678.

[7]

Lugli G, Cohen AM, Bennett DA, et al. Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers[J/OL]. PLoS One, 2015, 10(10): e0139233[2021-06-21]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139233. DOI: 10.1371/journal.pone.0139233.

[8] Mege D, Panicot-Dubois L, Ouaissi M, et al.  The origin and concentration of circulating microparticles differ according to cancer type and evolution: a prospective single-center study[J]. Int J Cancer, 2016, 138(4): 939-948.   doi: 10.1002/ijc.29837
[9] Ong SG, Lee WH, Huang M, et al.  Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer[J]. Circulation, 2014, 130(11 Suppl 1): S60-69.   doi: 10.1161/CIRCULATIONAHA.113.007917
[10] Hejrati A, Hasani B, Esmaili M, et al.  Role of exosome in autoimmunity, with a particular emphasis on rheumatoid arthritis[J]. Int J Rheum Dis, 2021, 24(2): 159-169.   doi: 10.1111/1756-185X.14021
[11]

Romagnoli GG, Zelante BB, Toniolo PA, et al. Dendritic cell-derived exosomes may be a tool for cancer immunotherapy by converting tumor cells into immunogenic targets[J/OL]. Front Immunol, 2014, 5: 692[2021-06-21]. https://www.frontiersin.org/articles/10.3389/fimmu.2014.00692/full. DOI: 10.3389/fimmu.2014.00692.

[12]

Yuan L, Li JY. Exosomes in Parkinson's disease: current perspectives and future challenges[J/OL]. ACS Chem Neurosci, 2019, 10(2): 964-972[2021-06-21]. https://pubs.acs.org/doi/10.1021/acschemneuro.8b00469. DOI: 10.1021/acschemneuro.8b00469.

[13] Salvage JP, Thom C, Lewis AL, et al.  Nanoprecipitation of polymeric nanoparticle micelles based on 2-methacryloyloxyethyl phosphorylcholine (MPC) with 2-(diisopropylamino)ethyl methacrylate (DPA), for intracellular delivery applications[J]. J Mater Sci Mater Med, 2015, 26(3): 150-.   doi: 10.1007/s10856-015-5480-9
[14]

Zhao HY, Yang LF, Baddour J, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism[J/OL]. eLife, 2016, 5: e10250[2021-06-21]. https://elifesciences.org/articles/10250. DOI: 10.7554/eLife.10250.

[15] Zhuang XY, Xiang XY, Grizzle W, et al.  Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain[J]. Mol Ther, 2011, 19(10): 1769-1779.   doi: 10.1038/mt.2011.164
[16] Jiao Y, Xu P, Shi HL, et al.  Advances on liver cell-derived exosomes in liver diseases[J]. J Cell Mol Med, 2021, 25(1): 15-26.   doi: 10.1111/jcmm.16123
[17] Palestro CJ.  Molecular imaging of infection: the first 50 years[J]. Semin Nucl Med, 2020, 50(1): 23-34.   doi: 10.1053/j.semnuclmed.2019.10.002
[18] Satake T, Suetsugu A, Nakamura M, et al.  Color-coded imaging of the fate of cancer-cell-derived exosomes during pancreatic cancer metastases in a nude-mouse model[J]. Anticancer Res, 2019, 39(8): 4055-4060.   doi: 10.21873/anticanres.13561
[19]

Gangadaran P, Hong CM, Ahn BC. An update on in vivo imaging of extracellular vesicles as drug delivery vehicles[J/OL]. Front Pharmacol, 2018, 9: 169[2021-06-21]. https://www.frontiersin.org/articles/10.3389/fphar.2018.00169/full. DOI: 10.3389/fphar.2018.00169.

[20] Chuo STY, Chien JCY, Lai CPK.  Imaging extracellular vesicles: current and emerging methods[J]. J Biomed Sci, 2018, 25(1): 91-.   doi: 10.1186/s12929-018-0494-5
[21]

Luo WJ, Dai Y, Chen ZS, et al. Spatial and temporal tracking of cardiac exosomes in mouse using a nano-luciferase-CD63 fusion protein[J/OL]. Commun Biol, 2020, 3(1): 114[2021-06-21]. https://www.nature.com/articles/s42003-020-0830-7. DOI: 10.1038/s42003-020-0830-7.

[22] Busato A, Bonafede R, Bontempi P, et al.  Labeling and magnetic resonance imaging of exosomes isolated from adipose stem cells[J]. Curr Protoc Cell Biol, 2017, 75: 3.44.1-3.44.15.   doi: 10.1002/cpcb.23
[23] Liu TQ, Zhu YR, Zhao RT, et al.  Visualization of exosomes from mesenchymal stem cells in vivo by magnetic resonance imaging[J]. Magn Reson Imaging, 2020, 68: 75-82.   doi: 10.1016/j.mri.2020.02.001
[24] Phillips WT, Goins BA, Bao AD.  Radioactive liposomes[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2009, 1(1): 69-83.   doi: 10.1002/wnan.3
[25]

Hwang DW, Choi H, Jang SC, et al. Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using 99mTc-HMPAO[J/OL]. Sci Rep, 2015, 5: 15636[2021-06-21]. https://www.nature.com/articles/srep15636. DOI: 10.1038/srep15636.

[26] Hwang DW.  Perspective in nuclear theranostics using exosome for the brain[J]. Nucl Med Mol Imaging, 2019, 53(2): 108-114.   doi: 10.1007/s13139-018-00567-6
[27]

González MI, Martín-Duque P, Desco M, et al. Radioactive labeling of milk-derived exosomes with 99mTc and in vivo tracking by SPECT imaging[J/OL]. Nanomaterials, 2020, 10(6): 1062[2021-06-21]. https://www.mdpi.com/2079-4991/10/6/1062. DOI: 10.3390/nano10061062.

[28] Munagala R, Aqil F, Jeyabalan J, et al.  Bovine milk-derived exosomes for drug delivery[J]. Cancer Lett, 2016, 371(1): 48-61.   doi: 10.1016/j.canlet.2015.10.020
[29] Rashid MH, Borin TF, Ara R, et al.  Differential in vivo biodistribution of 131I-labeled exosomes from diverse cellular origins and its implication for theranostic application[J]. Nanomedicine, 2019, 21: 102072-.   doi: 10.1016/j.nano.2019.102072
[30]

Testa U, Pelosi E, Castelli G. Endothelial progenitors in the tumor microenvironment[M]//Birbrair A. Tumor microenvironment: state of the science. Cham: Springer, 2020: 85−115. DOI: 10.1007/978-3-030-44518-8_7.

[31] Zhang CX, Ye SB, Ni JJ, et al.  STING signaling remodels the tumor microenvironment by antagonizing myeloid-derived suppressor cell expansion[J]. Cell Death Differ, 2019, 26(11): 2314-2328.   doi: 10.1038/s41418-019-0302-0
[32]

Jing BP, Gai YK, Qian RJ, et al. Hydrophobic insertion-based engineering of tumor cell-derived exosomes for SPECT/NIRF imaging of colon cancer[J/OL]. J Nanobiotechnol, 2021, 19(1): 7[2021-06-21]. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-020-00746-8. DOI: 10.1186/s12951-020-00746-8.

[33] Morishita M, Takahashi Y, Nishikawa M, et al.  Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice[J]. J Pharm Sci, 2015, 104(2): 705-713.   doi: 10.1002/jps.24251
[34] Takahashi Y, Nishikawa M, Takakura Y.  Analysis and control of in vivo kinetics of exosomes for the development of exosome-based DDS[J]. Yakugaku Zasshi, 2016, 136(1): 49-53.   doi: 10.1248/yakushi.15-00227-2
[35] Varga Z, Gyurkó I, Pálóczi K, et al.  Radiolabeling of extracellular vesicles with 99mTc for quantitative in vivo imaging studies[J]. Cancer Biother Radiopharm, 2016, 31(5): 168-173.   doi: 10.1089/cbr.2016.2009
[36] Molavipordanjani S, Khodashenas S, Abedi SM, et al.  99mTc-radiolabeled HER2 targeted exosome for tumor imaging[J]. Eur J Pharm Sci, 2020, 148: 105312-.   doi: 10.1016/j.ejps.2020.105312
[37]

Faruqu FN, Wang JTW, Xu LZ, et al. Membrane radiolabelling of exosomes for comparative biodistribution analysis in immunocompetent and immunodeficient mice − a novel and universal approach[J/OL]. Theranostics, 2019, 9(6): 1666−1682[2021-06-21]. https://www.thno.org/v09p1666.htm. DOI: 10.7150/thno.27891.

[38]

Jung KO, Kim YH, Chung SJ, et al. Identification of lymphatic and hematogenous routes of rapidly labeled radioactive and fluorescent exosomes through highly sensitive multimodal imaging[J/OL]. Int J Mol Sci, 2020, 21(21): 7850[2021-06-21]. https://www.mdpi.com/1422-0067/21/21/7850. DOI: 10.3390/ijms21217850.

[39] Das T, Banerjee S.  Theranostic applications of lutetium-177 in radionuclide therapy[J]. Curr Radiopharm, 2016, 9(1): 94-101.   doi: 10.2174/1874471008666150313114644
[40] Shi SX, Li TT, Wen XF, et al.  Copper-64 labeled PEGylated exosomes for in vivo positron emission tomography and enhanced tumor retention[J]. Bioconjug Chem, 2019, 30(10): 2675-2683.   doi: 10.1021/acs.bioconjchem.9b00587
[41]

Jing BP, Qian RJ, Jiang DW, et al. Extracellular vesicles-based pre-targeting strategy enables multi-modal imaging of orthotopic colon cancer and image-guided surgery[J/OL]. J Nanobiotechnol, 2021, 19(1): 151[2021-06-21]. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-021-00888-3. DOI: 10.1186/s12951-021-00888-3.