[1] 胡大一, 丁荣晶.关注心血管疾病患者精神心理卫生的建议[J].中华心血管病杂志, 2012, 40(2): 89-91.
[2] Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions[J]. Arterioscler Thromb Vasc Biol, 2000, 20(5): 1262-1275.  doi: 10.1161/01.ATV.20.5.1262
[3] Herrick JB. Clinical features of sudden obstruction of the coronary arteries[J]. JAMA, 1983, 250(13): 1757-1765.  doi: 10.1001/jama.1983.03340130075039
[4] Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease[J]. Circulation, 1989, 79(4): 733-743.  doi: 10.1161/01.CIR.79.4.733
[5] Stoll G, Bendszus M. Inflammation and atherosclerosis: novel insights into plaque formation and destabilization[J]. Stroke, 2006, 37(7): 1923-1932.  doi: 10.1161/01.STR.0000226901.34927.10
[6] Servoss SJ, Januzzi JL, Muller JE. Triggers of acute coronary syndromes[J]. Prog Cardiovasc Dis, 2002, 44(5): 369-380.  doi: 10.1053/pcad.2002.123470
[7] Ridker PM. On evolutionary biology, inflammation, infection, and the causes of atherosclerosis[J]. Circulation, 2002, 105(1): 2-4.  doi: 10.1161/circ.105.1.2
[8] Little WC, Constantinescu M, Applegate RJ, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease?[J]. Circulation, 1988, 78(5 Pt 1): 1157-1166.
[9] Ueda Y, Ohtani T, Shimizu M, et al. Assessment of plaque vulnerability by angioscopic classification of plaque color[J]. Am Heart J, 2004, 148(2): 333-335.  doi: 10.1016/j.ahj.2004.03.047
[10] Thieme T, Wernecke KD, Meyer R, et al. Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes[J]. J Am Coll Cardiol, 1996, 28(1): 1-6.
[11] Papaioannou TG, Vavuranakis M, Androulakis A, et al. In-vivo imaging of carotid plaque neoangiogenesis with contrast-enhanced harmonic ultrasound[J]. Int J Cardiol, 2009, 134(3): e110-e112.  doi: 10.1016/j.ijcard.2008.01.020
[12] Giannoni MF, Vicenzini E, Citone M, et al. Contrast carotid ultrasound for the detection of unstable plaques with neoangiogenesis: a pilot study[J]. Eur J Vasc Endovasc Surg, 2009, 37(6): 722-727.  doi: 10.1016/j.ejvs.2008.12.028
[13] Huang PT, Huang FG, Zou CP, et al. Contrast-enhanced sonographic characteristics of neovascularization in carotid atherosclerotic plaques[J]. J Clin Ultrasound, 2008, 36(6): 346-351.  doi: 10.1002/jcu.20448
[14] Tuzcu EM, Berkalp B, De Franco AC, et al. The dilemma of diagnosing coronary calcification: angiography versus intravascular ultrasound[J]. J Am Coll Cardiol, 1996, 27(4): 832-838.  doi: 10.1016/0735-1097(95)00537-4
[15] Fujimoto JG, Boppart SA, Tearney GJ, et al. High resolution in vivo intra-arterial imaging with optical coherence tomography[J]. Heart, 1999, 82(2): 128-133.  doi: 10.1136/hrt.82.2.128
[16] Jang IK, Bouma BE, Kang DH, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound[J]. J Am Coll Cardiol, 2002, 39(4): 604-609.  doi: 10.1016/S0735-1097(01)01799-5
[17] Kuo WC, Hsiung MW, Shyu JJ, et al. Assessment of arterial characteristics in human atherosclerosis by extracting optical properties from polarization-sensitive optical coherence tomography[J]. Opt Express, 2008, 16(11): 8117-8125.  doi: 10.1364/OE.16.008117
[18] Leber AW, Knez A, von Ziegler F, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound[J]. J Am Coll Cardiol, 2005, 46(1): 147-154.  doi: 10.1016/j.jacc.2005.03.071
[19] Scridon T, Novaro GM, Bush HS, et al. Reclassification of patients for aggressive cholesterol treatment: additive value of multislice coronary angiography to the National Cholesterol Education Program guidelines[J]. Clin Cardiol, 2008, 31(9): 419-423.  doi: 10.1002/clc.20256
[20] Honda M, Kitagawa N, Tsutsumi K, et al. High-resolution magnetic resonance imaging for detection of carotid plaques[J]. Neurosurgery, 2006, 58(2): 338-346.  doi: 10.1227/01.NEU.0000195097.31033.66
[21] Yuan C, Kerwin WS, Ferguson MS, et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization[J]. J Magn Reson Imaging, 2002, 15(1): 62-67.  doi: 10.1002/jmri.10030
[22] Kerwin WS, O′ Brien KD, Ferguson MS, et al. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study[J]. Radiology, 2006, 241(2): 459-468.
[23] 张永学.分子影像探针:揭示生命活动本质的钥匙[J].中华核医学与分子影像杂志, 2012, 32(2): 81-83.
[24] Quillard T, Libby P. Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development[J]. Circ Res, 2012, 111(2): 231-244.  doi: 10.1161/CIRCRESAHA.112.268144
[25] Glaudemans AW, Slart RH, Bozzao A, et al. Molecular imaging in atherosclerosis[J]. Eur J Nucl Med Mol Imaging, 2010, 37(12): 2381-2397.
[26] Lees AM, Lees RS, Schoen FJ, et al. Imaging human atherosclerosis with 99mTc-labeled low density lipoproteins[J]. Arterioscler Thromb Vasc Biol, 1988, 8(5): 461-470.
[27] Te Boekhorst BC, van Tilborg GA, Strijkers GJ, et al. Molecular MRI of inflammation in Atherosclerosis[J]. Curr Cardiovasc Imaging Rep, 2012, 5(1): 60-68.  doi: 10.1007/s12410-011-9114-4
[28] Klibanov AL. Ultrasound molecular imaging with targeted microbubble contrast agents[J]. J Nucl Cardiol, 2007, 14(6): 876-884.
[29] Kaufmann BA, Carr CL, Belcik JT, et al. Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease[J]. Arterioscler Thromb Vasc Biol, 2010, 30(1): 54-59.  doi: 10.1161/ATVBAHA.109.196386
[30]

Rychak JJ, Klibanov AL. Molecular imaging of carotid plaque with targeted ultrasound contrast[M]//Nicolaides A, Beach KW, Kyriakou E, et al. Ultrasound and carotid bifurcation atherosclerosis. London: Springer, 2012: 153-161.

[31] Subramanian S, Jaffer FA, Tawakol A. Optical molecular imaging in atherosclerosis[J]. J Nucl Cardiol, 2010, 17(1): 135-144.  doi: 10.1007/s12350-009-9175-9
[32] Sheth RA, Maricevich M, Mahmood U. In vivo optical molecular imaging of matrix metalloproteinase activity in abdominal aortic aneurysms correlates with treatment effects on growth rate[J]. Atherosclerosis, 2010, 212(1): 181-187.
[33] Li D, Patel AR, Klibanov AL, et al. Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance[J]. Circ Cardiovasc Imaging, 2010, 3(4): 464-472.
[34] Rosenbaum D, Millon A, Fayad ZA. Molecular imaging in atherosclerosis: FDG PET[J]. Curr Atheroscler Rep, 2012, 14(5): 429-437.  doi: 10.1007/s11883-012-0264-x
[35] Lenglet S, Thomas A, Chaurand P, et al. Molecular imaging of matrix metalloproteinases in atherosclerotic plaques[J]. Thromb Haemo-st, 2012, 107(3): 409-416.
[36] Hartung D, Petrov A, Haider N, et al. Radiolabeled Monocyte Chemotactic Protein 1 for the detection of inflammation in experimental atherosclerosis[J]. J Nucl Med, 2007, 48(11): 1816-1821.  doi: 10.2967/jnumed.107.043463
[37] Flaumenhaft R, Tanaka E, Graham GJ, et al. Localization and quantification of platelet-rich thrombi in large blood vessels with near-infrared fluorescence imaging[J]. Circulation, 2007, 115(1): 84-93.
[38] Duerschmied D, Meiβner M, Peter K, et al. Molecular magnetic resonance imaging allows the detection of activated platelets in a new mouse model of coronary artery thrombosis[J]. Invest Radiol, 2011, 46(10): 618-623.
[39] Matter CM, Schuler PK, Alessi P, et al. Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin[J]. Circ Res, 2004, 95(12): 1225-1233.  doi: 10.1161/01.RES.0000150373.15149.ff
[40] Nahrendorf M, McCarthy JR, Libby P. Over a hump for imaging atherosclerosis: nanobodies visualize vascular cell adhesion molecule-1 in inflamed plaque[J]. Circ Res, 2012, 110(7): 902-903.  doi: 10.1161/CIRCRESAHA.112.267260
[41] Zhao Y, Kuge Y, Zhao S, et al. Comparison of 99mTc-annexin A5 with 18F-FDG for the detection of atherosclerosis in ApoE-/- mice[J]. Eur J Nucl Med Mol Imaging, 2007, 34(11): 1747-1755.  doi: 10.1007/s00259-007-0433-2
[42] Lee DE, Koo H, Sun IC, et al. Multifunctional nanoparticles for multimodal imaging and theragnosis[J]. Chem Soc Rev, 2012, 41(7): 2656-2672.  doi: 10.1039/C2CS15261D
[43] Nahrendorf M, Zhang H, Hembrador S, et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis[J]. Circulation, 2008, 117(3): 379-387.  doi: 10.1161/CIRCULATIONAHA.107.741181