[1] Nakamura S. Structure of Azomycin, a new antibiotic. Pharm Bull, 1955, 3(5): 379-383.  doi: 10.1248/cpb1953.3.379
[2] Troost EG, Laverman P, Philippens ME, et al. Correlation of[18F] FMISO autoradiography and pimonidazole immunohistochemistry in human head and neck carcinoma xenografts. Eur J Nucl Med Mol Iamging, 2008, 35(10): 1803-1811.  doi: 10.1007/s00259-008-0772-7
[3] Valable S, Petit E, Roussel S, et al. Complementary information from magnetic resonance imaging and 18F-fluoromisonidazole positron emission tomography in the assessment of the response to an antiangiogenic treatment in a rat brain tumor model. Nucl Med Biol, 2011, 38(6): 781-793.
[4] Rajendran JG, Schwartz DL, O'Sullivan J, et al. Tumor hypoxia imaging with [18F] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res, 2006, 12(18): 5435-5441.  doi: 10.1158/1078-0432.CCR-05-1773
[5] Kurihara H, Honda N, Kono Y, et al. Radiolabelled agents for PET imaging of tumor hypoxia. Curr Med Chem, 2012, 19(20): 3283-3269.
[6] Yamamoto Y, Maeda Y, Kawai N, et al. Hypoxia assessed by 18F-fluoromisonidazole positron emission tomography in newly diagnosed gliomas. Nucl Med Commun, 2012, 33(6): 621-625.
[7] Hayashi K, Furutsuka K, Takei M, et al. High-yield automated synthesis of [18F] fluoroazomycin arabinoside ([18F]FAZA) for hypoxia-specific tumor imaging. Appl Radiat Isot, 2011, 69(7): 1007-1013.  doi: 10.1016/j.apradiso.2011.02.025
[8] Bouvet VR, Wuest M, Wiebe LI, et al. Synthesis of hypoxia imaging agent 1-(5-deoxy-5-fluoro-α-D-arabinofuranosyl)-2-nitroimidazole using microfluidic technology. Nucl Med Biol, 2011, 38(2): 235-245.
[9] Mortensen LS, Busk M, Nordsmark M, et al. Accessing radiation response using hypoxia PET imaging and oxygen sensitive electrodes: a preclinical study. Radiother Oncol, 2011, 99(3): 418-423.
[10] Zha Z, Zhu L, Liu Y, et al. Synthesis and evaluation of two novel 2-nitroimidazole derivatives as potential PET radioligands for tumor imaging. Nucl Med Biol, 2011, 38(4): 501-508.
[11] Vercellino L, Groheux D, Thoury A, et al. Hypoxia imaging of uterine cervix carcinoma with 18F-FETNIM PET-CT. Clin Nucl Med, 2012, 37(11): 1065-1068.  doi: 10.1097/RLU.0b013e3182638e7e
[12] Chen L, Zhang Z, Kolb HC, et al. 18F-HX4 hypoxia imaging with PET-CT in head and neck cancer: a comparison with 18F-FMISO. Nucl Med Commun, 2012, 33(10): 1096-1102.  doi: 10.1097/MNM.0b013e3283571016
[13] Mahy P, De Bast M, Gillart J, et al. Detection of tumour hypoxia: comparison between EF5 adducts and [18F]-EF3 uptake on an individual mouse tumour basis. Eur J Nucl Med Mol Imaging, 2006, 33(5): 553-556.  doi: 10.1007/s00259-005-0049-3
[14] Mahy P, De Bast M, De Groot T, et al. Comparative pharma-cokinetics, biodistribution, metabolism and hypoxia-dependent uptake of[18F]-EF3 and[18F]-MISO in rodent tumor models. Radiother Oncol, 2008, 89(3): 353-360.
[15] Dubois L, Landuyt W, Cloetens L, et al. [18F]EF3 is not superior to [18F] FMISO for PET-based hypoxia evaluation as measured in a rat rhabdomyosarcoma tumour model. Eur J Nucl Med Mol Imaging, 2009, 36(2): 209-218.  doi: 10.1007/s00259-008-0907-x
[16] Reischl G, Dorow DS, Cullinance C, et al. Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA—first small animal PET results. J Pharm Pharm Sci, 2007, 10(2): 203-211.
[17] Riedl CC, Brader P, Zanzonico P, et al. Tumor hypoxia imaging in orthotopic liver tumors and peritoneal metastasis: a comparative study featuring dynamic 18F-MISO and 124I-IAZG PET in the same study cohort. Eur J Nucl Med Mol Imaging, 2008, 35(1): 39-46.  doi: 10.1007/s00259-007-0522-2
[18] Vera P, Bohn P, Edet-Sanson A, et al. Simultaneous positron emission tomography(PET) assessment of metabolism with 18F-fluoro-2-deoxy-d-glucose(FDG), proliferation with 18F-fluoro-thymidine(FLT), and hypoxia with 18Fluoro-misonidazole(F-miso) before and during radiotherapy in patients with non-small-cell lung cancer(NSCLC): a pilot study. Radiother Oncol, 2011, 98(1): 109-116.
[19] Christian N, Deheneffe S, Bol A, et al. Is 18F-FDG a surrogate tracer to measure tumor hypoxia? Comparison with the hypoxic tracer 14C-EF3 in animal tumor models. Radiother Oncol, 2010, 97(2): 183-188.
[20] Kaira K, Endo M, Abe M, et al. Biologic correlates of 18F-FDG uptake on PET in pulmonary pleomorphic carcinoma. Lung Cancer, 2011, 71(2): 144-150.
[21] Yoshii Y, Yoneda M, Ikawa M, et al. Radiolabeled Cu-ATSM as a novel indicator of overreduced intracellular state due to mitochondrial dysfunction: studies with mitochondrial DNA-less ρ0 cells and cybrids carrying MELAS mitochondrial DNA mutation. Nucl Med Biol, 2012, 39(2): 177-185.
[22] Dence CS, Ponde DE, Welch MJ, et al. Autoradiographic and small-animal PET comparisons between 18F-FMISO, 18F-FDG, 18F-FLT and the hypoxia selective 64Cu-ATSM in a rodent model of cancer. Nucl Med Biol, 2008, 35(6): 713-20.  doi: 10.1016/j.nucmedbio.2008.06.001
[23] Grigsby PW, Malyapa RS, Hiqashikubo R, et al. Comparison of molecular markers of hypoxia and imaging with 60Cu-ATSM in cancer of the uterine cervix. Mol Imaging Biol, 2007, 9(5): 278-283.
[24] Sun X, Chu T, Wang X. Preliminary studies of 99mTc-BnAO and its analogues: synthesis, radiolabeling and in vitro cell uptake. Nucl Med Biol, 2010, 37(2): 117-123.
[25] Lee BF, Wang LW, Lin SH, et al. Tc-99m-HL91 imaging in the early detection of neuronal injury in a neonatal rat model of hypoxic ischemia. Crit Care Med, 2012, 40(6): 1930-1938.