[1] O JH, Lodge MA, Wahl RL.  Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0[J]. Radiology, 2016, 280(2): 576-584.   doi: 10.1148/radiol.2016142043
[2] Laffon E, Burger IA, Lamare F, et al.  SUVpeak performance in lung cancer: comparison to average SUV from the 40 hottest voxels[J]. J Nucl Med, 2016, 57(1): 85-88.   doi: 10.2967/jnumed.115.161968
[3] Tahari AK, Chien D, Azadi JR, et al.  Optimum lean body formulation for correction of standardized uptake value in PET imaging[J]. J Nucl Med, 2014, 55(9): 1481-1484.   doi: 10.2967/jnumed.113.136986
[4] Pierce II LA, Elston BF, Clunie DA, et al.  A digital reference object to analyze calculation accuracy of PET standardized uptake value[J]. Radiology, 2015, 277(2): 538-545.   doi: 10.1148/radiol.2015141262
[5] Keramida G, Peters AM.  The appropriate whole body metric for calculating standardised uptake value and the influence of sex[J]. Nucl Med Commun, 2019, 40(1): 3-7.   doi: 10.1097/MNM.0000000000000935
[6] Halsne T, Müller EG, Spiten AE, et al.  The effect of new formulas for lean body mass on lean-body-mass-normalized SUV in oncologic 18F-FDG PET/CT[J]. J Nucl Med Technol, 2018, 46(3): 253-259.   doi: 10.2967/jnmt.117.204586
[7] Thie JA, Hubner KF, Isidoro FP, et al.  A weight index for the standardized uptake value in 2-deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography[J]. Mol Imaging Biol, 2007, 9(2): 91-98.   doi: 10.1007/s11307-006-0068-x
[8] Tatcı E, Biner İU, Emir S, et al.  The correlation between pre-treatment fluorodeoxyglucose positron emission tomography/computed tomography parameters and clinical prognostic factors in pediatric Hodgkin lymphoma[J]. Mol Imaging Radionucl Ther, 2017, 26(1): 9-16.   doi: 10.4274/mirt.94914
[9] Shankar LK, Hoffman JM, Bacharach S, et al.  Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials[J]. J Nucl Med, 2006, 47(6): 1059-1066.
[10]

Jahromi AH, Moradi F, Hoh CK. Glucose-corrected standardized uptake value (SUVgluc) is the most accurate SUV parameter for evaluation of pulmonary nodules[J/OL]. Am J Nucl Med Mol Imaging, 2019, 9(5): 243−247[2020-07-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872475/.

[11] 陈佩和, 徐文贵, 李小凤, 等.  肝细胞肝癌的葡萄糖代谢机制及在PET显像中的应用价值[J]. 国际放射医学核医学杂志, 2018, 42(6): 547-552.   doi: 10.3760/cma.j.issn.1673-4114.2018.06.013
Chen PH, Xu WG, Li XF, et al.  Glycometabolism mechanism in hepatocellular carcinoma and its application in PET[J]. Int J Radiat Med Nucl Med, 2018, 42(6): 547-552.   doi: 10.3760/cma.j.issn.1673-4114.2018.06.013
[12] Akers SR, Werner TJ, Rubello D, et al.  18F-FDG uptake and clearance in patients with compromised renal function[J]. Nucl Med Commun, 2016, 37(8): 825-382.   doi: 10.1097/MNM.0000000000000513
[13] Meier JG, Einstein SA, Diab RH, et al.  Impact of free-breathing CT on quantitative measurements of static and quiescent period-gated PET images[J]. Phys Med Biol, 2019, 64(10): 105013-.   doi: 10.1088/1361-6560/ab1cdd
[14] Zhang RQ, Zukić D, Byrd DW, et al.  PET/CT-guided biopsy with respiratory motion correction[J]. Int J Comput Assist Radiol Surg, 2019, 14(12): 2187-2198.   doi: 10.1007/s11548-019-02047-4
[15] Alkhawaldeh K, Alavi A.  Quantitative assessment of FDG uptake in brown fat using standardized uptake value and dual-time-point scanning[J]. Clin Nucl Med, 2008, 33(10): 663-667.   doi: 10.1097/RLU.0b013e318184b3de
[16]

Rahman WT, Wale DJ, Viglianti BL, et al. The impact of infection and inflammation in oncologic 18F-FDG PET/CT imaging[J/OL]. Biomed Pharmacother, 2019, 117: 109168[2020-07-25]. https://www.sciencedirect.com/science/article/pii/S0753332219323376?via%3Dihub. DOI: 10.1016/j.biopha.2019.109168.

[17] Graham MM, Wahl RL, Hoffman JM, et al.  Summary of the UPICT protocol for 18F-FDG PET/CT imaging in oncology clinical trials[J]. J Nucl Med, 2015, 56(6): 955-961.   doi: 10.2967/jnumed.115.158402
[18] Kurland BF, Muzi M, Peterson LM, et al.  Multicenter clinical trials using 18F-FDG PET to measure early response to oncologic therapy: effects of injection-to-acquisition time variability on required sample size[J]. J Nucl Med, 2016, 57(2): 226-230.   doi: 10.2967/jnumed.115.162289
[19] Parghane RV, Basu S.  Dual-time point 18F-FDG-PET and PET/CT for differentiating benign from malignant musculoskeletal lesions: opportunities and limitations[J]. Semin Nucl Med, 2017, 47(4): 373-391.   doi: 10.1053/j.semnuclmed.2017.02.009
[20] Kurland BF, Peterson LM, Shields AT, et al.  Test-retest reproducibility of 18F-FDG PET/CT uptake in cancer patients within a qualified and calibrated local network[J]. J Nucl Med, 2019, 60(5): 608-614.   doi: 10.2967/jnumed.118.209544
[21]

Quantitative Imaging Biomarkers Alliance. QIBA profile. FDG-PET/CT as an imaging biomarker measuring response to cancer therapy[EB/OL]. [2016-11-18]. http://qibawiki.rsna.org/index.php?title=Profiles&oldid=16798.

[22]

Matheoud R, Al-Maymani N, Oldani A, et al. The role of activity, scan duration and patient's body mass index in the optimization of FDG imaging protocols on a TOF-PET/CT scanner[J/OL]. EJNMMI Phys, 2021, 8(1): 35[2021-08-10]. https://ejnmmiphys.springeropen.com/articles/10.1186/s40658-021-00380-9. DOI: 10.1186/s40658-021-00380-9.

[23]

Strandberg S, Hashemi A, Axelsson J, et al. Optimization of PET reconstruction algorithm, SUV thresholding algorithm and PET acquisition time in clinical 11C-acetate PET/CT[J/OL]. PLoS One, 2018, 13(12): e0209169[2020-07-25]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209169. DOI: 10.1371/journal.pone.0209169.

[24] 朱毓华, 鲁佳荧, 张慧玮, 等.  FBP和OSEM对正常人脑内多巴胺转运体分布半定量值影响的研究[J]. 国际放射医学核医学杂志, 2018, 42(5): 409-413.   doi: 10.3760/cma.j.issn.1673-4114.2018.05.004
Zhu YH, Lu JY, Zhang HW, et al.  Effects of the different PET image reconstruction methods on distribution of dopamine transporter in healthy human brain[J]. Int J Radiat Med Nucl Med, 2018, 42(5): 409-413.   doi: 10.3760/cma.j.issn.1673-4114.2018.05.004
[25] van der Vos CS, Koopman D, Rijnsdorp S, et al.  Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET[J]. Eur J Nucl Med Mol Imaging, 2017, 44(Suppl 1): S4-16.   doi: 10.1007/s00259-017-3727-z
[26] Brendle C, Kupferschläger J, Nikolaou K, et al.  Is the standard uptake value (SUV) appropriate for quantification in clinical PET imaging? — variability induced by different SUV measurements and varying reconstruction methods[J]. Eur J Radiol, 2015, 84(1): 158-162.   doi: 10.1016/j.ejrad.2014.10.018
[27] Sheikhbahaei S, Marcus C, Wray R, et al.  Impact of point spread function reconstruction on quantitative 18F-FDG-PET/CT imaging parameters and inter-reader reproducibility in solid tumors[J]. Nucl Med Commun, 2016, 37(3): 288-296.   doi: 10.1097/MNM.0000000000000445
[28] Sharifpour R, Ghafarian P, Bakhshayesh-Karam M, et al.  Impact of time-of-flight and point-spread-function for respiratory artifact reduction in PET/CT imaging: focus on standardized uptake value[J]. Tanaffos, 2017, 16(2): 127-135.
[29] Westerterp M, Pruim J, Oyen W, et al.  Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters[J]. Eur J Nucl Med Mol Imaging, 2007, 34(3): 392-404.   doi: 10.1007/s00259-006-0224-1
[30] Lodge MA, Chaudhry MA, Wahl RL.  Noise considerations for PET quantification using maximum and peak standardized uptake value[J]. J Nucl Med, 2012, 53(7): 1041-1047.   doi: 10.2967/jnumed.111.101733
[31] Tsutsui Y, Awamoto S, Himuro K, et al.  Characteristics of smoothing filters to achieve the guideline recommended positron emission tomography image without harmonization[J]. Asia Ocean J Nucl Med Biol, 2018, 6(1): 15-23.   doi: 10.22038/aojnmb.2017.26684.1186
[32] Doot RK, Scheuermann JS, Christian PE, et al.  Instrumentation factors affecting variance and bias of quantifying tracer uptake with PET/CT[J]. Med Phys, 2010, 37(11): 6035-6046.   doi: 10.1118/1.3499298
[33] Jaskowiak CJ, Bianco JA, Perlman SB, et al.  Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values[J]. J Nucl Med, 2005, 46(3): 424-428.
[34] Geworski L, Knoop BO, de Wit M, et al.  Multicenter comparison of calibration and cross calibration of PET scanners[J]. J Nucl Med, 2002, 43(5): 635-639.
[35] Benz MR, Allen-Auerbach MS, Eilber FC, et al.  Combined assessment of metabolic and volumetric changes for assessment of tumor response in patients with soft-tissue sarcomas[J]. J Nucl Med, 2008, 49(10): 1579-1584.   doi: 10.2967/jnumed.108.053694
[36] Schoen M, Braun T, Manava P, et al.  Influence of scan time point and volume of intravenous contrast administration on blood-pool and liver SUVmax and SUVmean in [18F] FDG PET/CT[J]. Nuklearmedizin, 2018, 57(2): 50-55.   doi: 10.3413/Nukmed-0919-17-08
[37] Razak HRA, Nordin AJ, Ackerly T, et al.  Quantifying the effects of iodine contrast media on standardised uptake values of FDG PET/CT images: an anthropomorphic phantom study[J]. Australas Phys Eng Sci Med, 2011, 34(3): 367-374.   doi: 10.1007/s13246-011-0088-y
[38]

Osman MM, Muzaffar R, Altinyay ME, et al. FDG Dose extravasations in PET/CT: frequency and impact on SUV measurements[J/OL]. Front Oncol, 2011, 1: 41[2020-07-25]. https://www.frontiersin.org/articles/10.3389/fonc.2011.00041/full. DOI: 10.3389/fonc.2011.00041.

[39] Rahmim A, Lodge MA, Karakatsanis NA, et al.  Dynamic whole-body PET imaging: principles, potentials and applications[J]. Eur J Nucl Med Mol Imaging, 2019, 46(2): 501-518.   doi: 10.1007/s00259-018-4153-6