[1] Ramieri MT, Murari R, Botti C, et al. Detection of HER2 amplification using the SISH technique in breast, colon, prostate, lung and ovarian carcinoma[J]. Anticancer Res, 2010, 30(4):1287-1292.
[2] Carlsson J. Potential for clinical radionuclide-based imaging and therapy of common cancers expressing EGFR-family receptors[J]. Tumour Biol, 2012, 33(3):653-659. DOI:10.1007/s13277-011-0307-x.
[3] Buzdar AU, Ibrahim NK, Francis D, et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy:results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer[J]. J Clin Oncol, 2005, 23(16):3676-3685. DOI:10.1200/JCO. 2005. 07. 032.
[4] Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer(ToGA):a phase 3, open-label, randomised controlled trial[J]. Lancet, 2010, 376(9742):687-697. DOI:10.1016/S0140-6736(10)61121-X.
[5] Hynes NE, Stern DF. The biology of erbB-2/neu/HER-2 and its role in cancer[J]. Biochim Biophys Acta, 1994, 1198(2/3):165-184.
[6] Dean-Colomb W, Esteva FJ. Her2-positive breast cancer:herceptin and beyond[J]. Eur J Cancer, 2008, 44(18):2806-2812. DOI:10.1016/j.ejca. 2008. 09. 013.
[7] Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer:correlation of relapse and survival with amplification of the HER-2/neu oncogene[J]. Science, 1987, 235(4785):177-182.  doi: 10.1126/science.3798106
[8]

Shen K, Ma X, Zhu C, et al. Safety and Efficacy of Trastuzumab Emtansine in Advanced Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: a Meta-analysis[J/OL]. Sci Rep, 2016, 6: 23262[2015-12-23]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4793192. DOI: 10.1038/srep23262.

[9] Bell R, Verma S, Untch M, et al. Maximizing clinical benefit with trastuzumab[J]. Semin Oncol, 2004, 31(5 Suppl 10):S35-44. DOI:10.1053/j.seminoncol. 2004. 07. 020.
[10] Nord K, Nilsson J, Nilsson B, et al. A combinatorial library of an alpha-helical bacterial receptor domain[J]. Protein Eng, 1995, 8(6):601-608. DOI:10.1093/protein/8. 6. 601.
[11] Miao Z, Levi J, Cheng Z. Protein scaffold-based molecular probes for cancer molecular imaging[J]. Amino Acids, 2011, 41(5):1037-1047. DOI:10.1007/s00726-010-0503-9.
[12] Nilsson FY, Tolmachev V. Affibody molecules:new protein domains for molecular imaging and targeted tumor therapy[J]. Curr Opin Drug Discov Devel, 2007, 10(2):167-175.
[13] Orlova A, Feldwisch J, Abrahmsén L, et al. Update:affibody molecules for molecular imaging and therapy for cancer[J]. Cancer Biother Radiopharm, 2007, 22(5):573-584. DOI:10.1089/cbr.2006.004-U.
[14] Wikman M, Steffen AC, Gunneriusson E, et al. Selection and characterization of HER2/neu-binding affibody ligands[J]. Protein Eng Des Sel, 2004, 17(5):455-462. DOI:10.1093/protein/gzh053.
[15] Orlova A, Magnusson M, Eriksson TL, et al. Tumor imaging using a picomolar affinity HER2 binding affibody molecule[J]. Cancer Res, 2006, 66(8):4339-4348. DOI:10.1158/0008-5472.CAN-05-3521.
[16] Ahlgren S, Orlova A, Rosik D, et al. Evaluation of maleimide derivative of DOTA for site-specific labeling of recombinant affibody molecules[J]. Bioconjug Chem, 2008, 19(1):235-243. DOI:10.1021/bc700307y.
[17] Feldwisch J, Tolmachev V, Lendel C, et al. Design of an optimized scaffold for affibody molecules[J]. J Mol Biol, 2010, 398(2):232-247. DOI:10.1016/j.jmb.2010.03.002.
[18] Löfblom J, Feldwisch J, Tolmachev V, et al. Affibody molecules:engineered proteins for therapeutic, diagnostic and biotechnological applications[J]. FEBS Lett, 2010, 584(12):2670-2680. DOI:10.1016/j.febslet.2010.04.014.
[19] Luo TY, Cheng PC, Chiang PF, et al. 188Re-HYNIC-trastuzumab enhances the effect of apoptosis induced by trastuzumab in HER2-overexpressing breast cancer cells[J]. Ann Nucl Med, 2015, 29(1):52-62. DOI:10.1007/s12149-014-0908-8.
[20] Tolmachev V, Wållberg H, Andersson K, et al. The influence of Bz-DOTA and CHX-A"-DTPA on the biodistribution of ABD-fused anti-HER2 Affibody molecules:implications for 114mIn-mediated targeting therapy[J]. Eur J Nucl Med Mol Imaging, 2009, 36(9):1460-1468. DOI:10.1007/s00259-009-1134-9.
[21] Tran TA, Ekblad T, Orlova A, et al. Effects of lysine-containing mercaptoacetyl-based chelators on the biodistribution of 99mTc-labeled anti-HER2 Affibody molecules[J]. Bioconjug Chem, 2008, 19(12):2568-2576. DOI:10.1021/bc800244b.
[22] Ahlgren S, Wållberg H, Tran TA, et al. Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine[J]. J Nucl Med, 2009, 50(5):781-789. DOI:10.2967/jnumed.108.056929.
[23] Orlova A, Tolmachev V, Pehrson R, et al. Synthetic affibody molecules:a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors[J]. Cancer Res, 2007, 67(5):2178-2186. DOI:10.1158/0008-5472.CAN-06-2887.
[24] Sörensen J, Sandberg D, Sandström M, et al. First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule[J]. J Nucl Med, 2014, 55(5):730-735. DOI:10.2967/jnumed.113.131243.
[25] Wållberg H, Orlova A, Altai M, et al. Molecular design and optimization of 99mTc-labeled recombinant affibody molecules improves their biodistribution and imaging properties[J]. J Nucl Med, 2011, 52(3):461-469. DOI:10.2967/jnumed.110.083592.
[26]

Zhang JM, Zhao XM, Wang SJ, et al. Evaluation of 99mTc-peptide-ZHER2: 342 Affibody® molecule for in vivo molecular imaging[J/OL]. Br J Radiol, 2014, 87(133): 20130484[2015-12-23]. http://www. ncbi. nlm. nih. gov/pmc/articles/PMC3898972. DOI: 10.1259/bjr.20130484.

[27] 张敬勉, 赵新明, 王士杰, 等. 99Tcm标记人表皮生长因子受体2小分子靶向结合蛋白的制备及体外结合特性[J].中华核医学与分子影像杂志, 2014, 34(3):208-212. DOI:10.3760/cma.j.issn.2095-2848.2014.03.012.
Zhang JM, Zhao XM, Wang SJ, et al. Preparation and characterization of 99Tcm-labeled human epidemal growth factor type 2 affibody molecule in vitro[J]. Chin J Nucl Med Mol Imaging, 2014, 34(3):208-212.  doi: 10.3760/cma.j.issn.2095-2848.2014.03.012
[28] Zhang J, Zhao X, Wang S, et al. Monitoring therapeutic response of human ovarian cancer to trastuzumab by SPECT imaging with 99mTc-peptide-ZHER2:342[J]. Nucl Med Biol, 2015, 42(6):541-546. DOI:10.1016/j.nucmedbio.2015.02.002.
[29] Kramer-Marek G, Shenoy N, Seidel J, et al. 68Ga-DOTA-affibody molecule for in vivo assessment of HER2/neu expression with PET[J]. Eur J Nucl Med Mol Imaging, 2011, 38(11):1967-1976. DOI:10.1007/s00259-011-1810-4.
[30] Cheng Z, De Jesus OP, Kramer DJ, et al. 64Cu-labeled affibody molecules for imaging of HER2 expressing tumors[J]. Mol Imaging Biol, 2010, 12(3):316-324. DOI:10.1007/s11307-009-0256-6.
[31] Kramer-Marek G, Bernardo M, Kiesewetter DO, et al. PET of HER2-positive pulmonary metastases with 18F-ZHER2:342 affibody in a murine model of breast cancer:comparison with 18F-FDG[J]. J Nucl Med, 2012, 53(6):939-946. DOI:10.2967/jnumed.111.100354.
[32] Altai M, Wållberg H, Honarvar H, et al. 188Re-ZHER2:V2, a promising affibody-based targeting agent against HER2-expressing tumors:preclinical assessment[J]. J Nucl Med, 2014, 55(11):1842-1848. DOI:10.2967/jnumed.114.140194.