[1] Scheltens P, Blennow K, Breteler MMB, et al.  Alzheimer's disease[J]. Lancet, 2016, 388(10043): 505-517.   doi: 10.1016/S0140-6736(15)01124-1
[2]

Patterson, C. World Alzheimer Report 2018. The State of the Art of Dementia Research: New Frontiers. An Analysis of Prevalence, Incidence, Cost and Trends[R]. London: Alzheimer's Disease International, 2018: 1−48.

[3] Dubois B, Feldman HH, Jacova C, et al.  Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria[J]. Lancet Neurol, 2014, 13(6): 614-629.   doi: 10.1016/s1474-4422(14)70090-0
[4] Epelbaum S, Genthon R, Cavedo E, et al.  Preclinical Alzheimer's disease: A systematic review of the cohorts underlying the concept[J]. Alzheimers Dement, 2017, 13(4): 454-467.   doi: 10.1016/j.jalz.2016.12.003
[5] Hajipour MJ, Santoso MR, Rezaee F, et al.  Advances in Alzheimer's Diagnosis and Therapy: The Implications of Nanotechnology[J]. Trends Biotechnol, 2017, 35(10): 937-953.   doi: 10.1016/j.tibtech.2017.06.002
[6] Kumar A, Tan A, Wong J, et al.  Nanotechnology for Neuroscience: Promising Approaches for Diagnostics, Therapeutics and Brain Activity Mapping[J]. Adv Funct Mater, 2017, 27(39): 1700489-.   doi: 10.1002/adfm.201700489
[7] Zhang WY, Wang WY, Yu DX, et al.  Application of nanodiagnostics and nanotherapy to CNS diseases[J]. Nanomedicine (Lond), 2018, 13(18): 2341-2371.   doi: 10.2217/nnm-2018-0163
[8] Baik SH, Kang S, Son SM, et al.  Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer's disease mouse model[J]. Glia, 2016, 64(12): 2274-2290.   doi: 10.1002/glia.23074
[9] Jagust W.  Is amyloid-β harmful to the brain? Insights from human imaging studies[J]. Brain, 2016, 139(1): 23-30.   doi: 10.1093/brain/awv326
[10] Wang YP, Mandelkow E.  Tau in physiology and pathology[J]. Nat Rev Neurosci, 2016, 17(1): 22-35.   doi: 10.1038/nrn.2015.1
[11] Karch CM, Goate AM.  Alzheimer's Disease Risk Genes and Mechanisms of Disease Pathogenesis[J]. Biol Psychiat, 2015, 77(1): 43-51.   doi: 10.1016/j.biopsych.2014.05.006
[12] Szaruga M, Veugelen S, Benurwar M, et al.  Qualitative changes in human γ-secretase underlie familial Alzheimer's disease[J]. J Exp Med, 2015, 212(12): 2003-2013.   doi: 10.1084/jem.20150892
[13] Tarasoff-Conway JM, Carare RO, Osorio RS, et al.  Clearance systems in the brain-implications for Alzheimer disease[J]. Nat Rev Neurol, 2015, 11(8): 457-470.   doi: 10.1038/nrneurol.2015.119
[14] Makin S.  The amyloid hypothesis on trial[J]. Nature, 2018, 559(S7715): S4-7.   doi: 10.1038/d41586-018-05719-4
[15] Polanco JC, Li CZ, Bodea LG, et al.  Amyloid-β and tau complexity-towards improved biomarkers and targeted therapies[J]. Nat Rev Neurol, 2018, 14(1): 22-39.   doi: 10.1038/nrneurol.2017.162
[16] Small SA, Duff K.  Linking Aβ and Tau in Late-Onset Alzheimer's Disease: A Dual Pathway Hypothesis[J]. Neuron, 2008, 60(4): 534-542.   doi: 10.1016/j.neuron.2008.11.007
[17] Goedert M.  Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein[J]. Science, 2015, 349(6248): 1255555-.   doi: 10.1126/science.1255555
[18]

Mudher A, Colin M, Dujardin S, et al. What is the evidence that tau pathology spreads through prion-like propagation?[J/OL]. Acta Neuropathol Commun, 2017, 5(1): 99 [2018-06-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735872/pdf/40478_2017_Article_488.pdf. DOI: 10.1186/s40478−017−0488−7.

[19] Georganopoulou DG, Chang L, Nam JM, et al.  Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2005, 102(7): 2273-2276.   doi: 10.1073/pnas.0409336102
[20] Elbassal EA, Morris C, Kent TW, et al.  Gold Nanoparticles as a Probe for Amyloid-Β Oligomer and Amyloid Formation[J]. J Phys Chem C, 2017, 121(36): 20007-20015.   doi: 10.1021/acs.jpcc.7b05169
[21] Gobbi M, Re F, Canovi M, et al.  Lipid-based nanoparticles with high binding affinity for amyloid-β1-42 peptide[J]. Biomaterials, 2010, 31(25): 6519-6529.   doi: 10.1016/j.biomaterials.2010.04.044
[22] Mourtas S, Canovi M, Zona C, et al.  Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide[J]. Biomaterials, 2011, 32(6): 1635-1645.   doi: 10.1016/j.biomaterials.2010.10.027
[23] Canovi M, Markoutsa E, Lazar AN, et al.  The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue[J]. Biomaterials, 2011, 32(23): 5489-5497.   doi: 10.1016/j.biomaterials.2011.04.020
[24]

Roney CA, Arora V, Kulkarni PV, et al. Nanoparticulate Radiolabelled Quinolines Detect Amyloid Plaques in Mouse Models of Alzheimer's Disease[J/OL]. Int J Alzheimers Dis, 2009, 2009: 481031 [2018-06-15]. https:/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2915660/pdf/IJAD2009-481031.pdf. DOI: 10.4061/2009/481031.

[25] Yang J, Wadghiri YZ, Hoang DM, et al.  Detection of amyloid plaques targeted by USPIO-Aβ1-42 in Alzheimer's disease transgenic mice using magnetic resonance microimaging[J]. NeuroImage, 2011, 55(4): 1600-1609.   doi: 10.1016/j.neuroimage.2011.01.023
[26] Scholtzova H, Wadghiri YZ, Douadi M, et al.  Memantine leads to behavioral improvement and amyloid reduction in Alzheimer's-disease-model transgenic mice shown as by micromagnetic resonance imaging[J]. J Neurosci Res, 2008, 86(12): 2784-2791.   doi: 10.1002/jnr.21713
[27] Wadghiri YZ, Sigurdsson EM, Sadowski M, et al.  Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging[J]. Magn Reson Med, 2003, 50(2): 293-302.   doi: 10.1002/mrm.10529
[28] Sigurdsson EM, Wadghiri YZ, Mosconi L, et al.  A non-toxic ligand for voxel-based MRI analysis of plaques in AD transgenic mice[J]. Neurobiol Aging, 2008, 29(6): 836-847.   doi: 10.1016/j.neurobiolaging.2006.12.018
[29] Salvati E, Re F, Sesana S, et al.  Liposomes functionalized to overcome the blood-brain barrier and to target amyloid-β peptide: the chemical design affects the permeability across an in vitro model[J]. Int J Nanomedicine, 2013, 8(1): 1749-1758.   doi: 10.2147/IJN.S42783
[30] Zhang C, Wan X, Zheng XY, et al.  Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer's disease mice[J]. Biomaterials, 2014, 35(1): 456-465.   doi: 10.1016/j.biomaterials.2013.09.063
[31] Zeng JQ, Wu JQ, Li MH, et al.  A Novel Magnetic Nanoparticle for Early Detection of Amyloid Plaques in Alzheimer's Disease[J]. Arch Med Res, 2018, 49(4): 282-285.   doi: 10.1016/j.arcmed.2018.09.005
[32]

Wadghiri YZ, Li JL, Wang JH, et al. Detection of Amyloid Plaques Targeted by Bifunctional USPIO in Alzheimer's Disease Transgenic Mice Using Magnetic Resonance Microimaging[J/OL]. PLoS One, 2013, 8(2): e57097 [2018-06-15]. https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC3584149&blobtype=pdf. DOI: 10.1371/journal.pone.0057097.

[33] Li YH, Xu D, Chan HN, et al.  Dual-Modal NIR-Fluorophore Conjugated Magnetic Nanoparticle for Imaging Amyloid-β Species In Vivo[J]. Small, 2018, 14(28): e1800901-.   doi: 10.1002/smll.201800901
[34] Bejanin A, Schonhaut DR, La Joie R, et al.  Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer's disease[J]. Brain, 2017, 140(12): 3286-3300.   doi: 10.1093/brain/awx243
[35] Neely A, Perry C, Varisli B, et al.  Ultrasensitive and Highly Selective Detection of Alzheimer's Disease Biomarker Using Two-Photon Rayleigh Scattering Properties of Gold Nanoparticle[J]. ACS Nano, 2009, 3(9): 2834-2840.   doi: 10.1021/nn900813b
[36] Stegurová L, Dráberová E, Bartos A, et al.  Gold nanoparticle-based immuno-PCR for detection of tau protein in cerebrospinal fluid[J]. J Immunol Methods, 2014, 406: 137-142.   doi: 10.1016/j.jim.2014.03.007
[37] Zengin A, Tamer U, Caykara T.  A SERS-Based Sandwich Assay for Ultrasensitive and Selective Detection of Alzheimer's Tau Protein[J]. Biomacromolecules, 2013, 14(9): 3001-3009.   doi: 10.1021/bm400968x
[38] Chen Q, Du Y, Zhang K, et al.  Tau-Targeted Multifunctional Nanocomposite for Combinational Therapy of Alzheimer's Disease[J]. ACS Nano, 2018, 12(2): 1321-1338.   doi: 10.1021/acsnano.7b07625