[1] 孙晓琰, 常城, 雷贝, 等.  18F-FDG PET/CT在肺癌性淋巴管病的影像学特征及诊断价值[J]. 国际放射医学核医学杂志, 2018, 42(4): 295-300.   doi: 10.3760/cma.j.issn.1673-4114.2018.04.001
Sun XY, Chang C, Lei B, et al.  Imaging features and diagnostic value of 18F-FDG PET/CT in pulmonary lymphangitic carcinomatosis[J]. Int J Radiat Med Nucl Med, 2018, 42(4): 295-300.   doi: 10.3760/cma.j.issn.1673-4114.2018.04.001
[2] 许靖, 李肖红, 秦永德, 等.  帕金森病脑部葡萄糖代谢和脑多巴胺转运体PET显像特点的临床研究[J]. 国际放射医学核医学杂志, 2016, 40(5): 338-344.   doi: 10.3760/cma.j.issn.1673-4114.2016.05.003
Xu J, Li XH, Qin YD, et al.  Clinical study of brain glucose metabolism and brain dopamine transporter PET imaging in patients with Parkinson's disease[J]. Int J Radiat Med Nucl Med, 2016, 40(5): 338-344.   doi: 10.3760/cma.j.issn.1673-4114.2016.05.003
[3] Mi BM, Xu YP, Pan DH, et al.  Non-invasive glucagon-like peptide-1 receptor imaging in pancreas with (18)F-Al labeled Cys(39)-exendin-4[J]. Biochem Biophys Res Commun, 2016, 471(1): 47-51.   doi: 10.1016/j.bbrc.2016.01.184
[4]

European Medicines Evaluation Agency. Position paper on non-clinical safety studies to support clinical trials with a single microdose[EB/OL]. (2004−06−23) [2018−09−10]. http://www.ema.europa.eu/pdfs/human/swp/259902en.pdf.

[5]

Food and Drug Administration. Guidance for industry, investigators and reviewers. Exploratory INDstudies[EB/OL]. (2005−12−29) [2018−09−10]. https://www.fda.gov/downloads/Drugs/Guidance Compliance Regulatory lnformation/Guidances/UCM078933.pdf.

[6]

International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. Guidance on Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals[EB/OL]. (2009−06−11) [2018−09−10]. http://www.ich.org/products/guidelines/multidisciplinary/multidisciplinary-single/article/guidance-on-nonclinical-safety-studies-for-the-conduct-of-human-clinical-trials-and-marketing-author.html.

[7] Surti S, Karp JS.  Advances in time-of-flight PET[J]. Phys Med, 2016, 32(1): 12-22.   doi: 10.1016/j.ejmp.2015.12.007
[8] Spinelli T, Calcagnile S, Giuliano C, et al.  Netupitant PET imaging and ADME studies in humans[J]. J Clin Pharmacol, 2014, 54(1): 97-108.   doi: 10.1002/jcph.198
[9] Aluicio-Sarduy E, Ellison PA, Barnhart TE, et al.  PET radiometals for antibody labeling[J]. J Labelled Comp Radiopharm, 2018, 61(9): 636-651.   doi: 10.1002/jlcr.3607
[10] 陈文, 魏洪源, 刘宁, 等.  正电子核素89Zr: 药物化学及其生物体内行为评价的研究新进展[J]. 核化学与放射化学, 2018, 40(1): 11-22.   doi: 10.7538/hhx.2017.YX.2016074.
Chen W, Wei HY, Liu N, et al.  Positron-Emitting Radionuclide 89Zr: Medicinal Chemistry and in Vivo Biological Behavior Evaluation[J]. J Nucl Chem Radiochem, 2018, 40(1): 11-22.   doi: 10.7538/hhx.2017.YX.2016074.
[11]

Sari H, Erlandsson K, Marner L, et al. Non-invasive kinetic modelling of PET tracers with radiometabolites using a constrained simultaneous estimation method: evaluation with 11C-SB201745[J/OL]. EJNMMI Res, 2018, 8: 58 [2018−09−10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029994/. DOI: 10.1186/s13550−018−0412−6.

[12] Wu HM, Kreissl MC, Schelbert HR, et al.  First-pass angiography in mice using FDG-PET: a simple method of deriving the cardiovascular transit time without the need of region-of-interest drawing[J]. IEEE Trans Nucl Sci, 2005, 52(5): 1311-1315.   doi: 10.1109/TNS.2005.858239
[13]

米度生物. 18F-BPA小鼠舌癌模型的肿瘤及全身显像研究[DB/OL]. (2018−08−08) [2018−09−10]. http://www.mi-tro.com/release/research/2018/0808/993.html.

Mi-tro. Imaging Studies of Tongue Carcinoma Model Mice with 18F-BPA[DB/OL]. (2018−08−08) [2018−09−10]. http://www.mi-tro.com/release/research/2018/0808/993.html.

[14] Gregoire V, Begg AC, Huiskamp R, et al.  Selectivity of boron carriers for boron neutron capture therapy: pharmacological studies with borocaptate sodium, L-boronophenylalanine and boric acid in murine tumors[J]. Radiother Oncol, 1993, 27(1): 46-54.   doi: 10.1016/0167-8140(93)90043-8
[15] Li J, Kim S, Shields AF, et al.  Integrating Dynamic Positron Emission Tomography and Conventional Pharmacokinetic Studies to Delineate Plasma and Tumor Pharmacokinetics of FAU, a Prodrug Bioactivated by Thymidylate Synthase[J]. J Clin Pharmacol, 2016, 56(11): 1433-1447.   doi: 10.1002/jcph.751
[16] Börjesson PK, Jauw YW, De Bree R, et al.  Radiation dosimetry of 89Zr-labeled chimeric monoclonal antibody U36 as used for immuno-PET in head and neck cancer patients[J]. J Nucl Med, 2009, 50(11): 1828-1836.   doi: 10.2967/jnumed.109.065862
[17]

米度生物. 89Zr标记PD-L1单抗及荷瘤鼠免疫PET显像[DB/OL]. (2018−04−20) [2018−09−10]. http://www.mi-tro.com/release/research/2018/0303/878.html.

Mi-tro. Immuno-PET imaging of PD-L1 Labeled with 89Zr in Tumor-Bearing Mice[DB/OL]. (2018−04−20) [2018−09−10]. http://www.mi-tro.com/release/research/2018/0303/878.html.

[18] 刘现忠, 崔璨, 刘子君, 等.  microPET-CT显像监测叶酸受体靶向放射性药物药代动力学的实验研究[J]. 生物医学工程与临床, 2017, 21(3): 217-222.   doi: 10.13339/j.cnki.sglc.20170511.001
Liu XZ, Cui C, Liu ZJ, et al.  MicroPET-CT imaging for in vivo pharmacokinetics study of folate receptor targeting 68Ga-DOTA-lys-FA[J]. Biomedical Engineering Clin Med, 2017, 21(3): 217-222.   doi: 10.13339/j.cnki.sglc.20170511.001
[19] England CG, Ehlerding EB, Hernandez R, et al.  Preclinical Pharmacokinetics and Biodistribution Studies of 89Zr-Labeled Pembrolizumab[J]. J Nucl Med, 2017, 58(1): 162-168.   doi: 10.2967/jnumed.116.177857
[20] Oliveira S, Cohen R, Walsum MS, et al.  A novel method to quantify IRDye800CW fluorescent antibody probesex vivoin tissue distribution studies[J]. EJNMMI Res, 2012, 2(1): 50-.   doi: 10.1186/2191-219X-2-50
[21]

米度生物. 89Zr标记干细胞及SD大鼠PET/CT显像[DB/OL]. (2018−04−20) [2018−09−10]. http://www.mi-tro.com/release/research/2018/0303/879.html.

Mi-tro. PET imaging of Stem Cells Labeled with 89Zr in SD Rats[DB/OL]. (2018−04−20) [2018−09−10].  http://www.mi-tro.com/release/research/2018/0303/879.html.

[22] Burns HD, Van Laere K, Sanabria-Bohórquez S, et al.  [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor[J]. Proc Natl Acad Sci U S A, 2007, 104(23): 9800-9805.   doi: 10.1073/pnas.0703472104
[23] Frosina G.  Positron emission tomography of high-grade gliomas[J]. J Neurooncol, 2016, 127(3): 415-425.   doi: 10.1007/s11060-016-2077-1
[24] Ponto LLB, Huang J, Walsh SA, et al.  Demonstration of Nucleoside Transporter Activity in the Nose-to-Brain Distribution of [18F] Fluorothymidine Using PET Imaging[J]. AAPS J, 2017, 20(1): 16-24.   doi: 10.1208/s12248-017-0158-5
[25] Palner M, Shen B, Jeon J, et al.  Preclinical Kinetic Analysis of the Caspase-3/7 PET Tracer 18F-C-SNAT: Quantifying the Changes in Blood Flow and Tumor Retention After Chemotherapy[J]. J Nucl Med, 2015, 56(9): 1415-1421.   doi: 10.2967/jnumed.115.155259
[26] Lamichhane N, Dewkar GK, Gobalakrishnan S, et al.  18F-Labeled Carboplatin Derivative for PET Imaging of Platinum Drug Distribution[J]. J Nucl Med, 2017, 58(12): 1997-2003.   doi: 10.2967/jnumed.117.191965
[27] 高霞, 张斌, 王斌, 等.  18F-FDG、18F-RGD和18F-FET在LN229脑胶质模型体内生物分布和Micro-PET显像[J]. 同位素, 2015, 28(3): 155-159.   doi: 10.7538/tws.2015.28.03.0155
Gao X, Zhang B, Wang B, et al.  Biodistribution and Micro-PET Imaging of 18F-FDG, 18F-RGD and 18F-FET in LN229 Glioma Model[J]. J Isotopes, 2015, 28(3): 155-159.   doi: 10.7538/tws.2015.28.03.0155
[28] 鲍晓, 王明伟, 徐俊彦, 等.  新型18F-RGD二聚体的正常生物分布及U87MG荷瘤裸鼠小动物PET/CT显像研究[J]. 中国癌症杂志, 2013, 23(6): 408-412.   doi: 10.3969/j.issn.1007-3969.2013.06.002
Bao X, Wang MW, Xu JY, et al.  Biodistribution in healthy KM mice and micro PET/CT imaging in U87MG tumor-bearing nude mice of a new 18F-labeled cyclic RGD dimer[J]. China Oncology, 2013, 23(6): 408-412.   doi: 10.3969/j.issn.1007-3969.2013.06.002
[29] 邓怀福, 唐刚华, 陈萍, 等.  S-11C-甲基-L-半胱氨酸在荷Hepa 1-6肝癌小鼠体内的分布及PET显像研究[J]. 中华核医学与分子影像杂志, 2012, 32(3): 214-217.   doi: 10.3760/cma.j.issn.2095-2848.2012.03.013
Deng HF, Tang GH, Chen P, et al.  The biodistribufion of S-11C-methyl-L-cysteine in Hepa 1-6 hepatoma bearing mice and its preclinical PET imaging[J]. Chin J Nucl Med Mol Imaging, 2012, 32(3): 214-217.   doi: 10.3760/cma.j.issn.2095-2848.2012.03.013
[30] 唐彩华, 唐刚华, 高思远, 等.  N-(2-18F-氟丙酰基)-L-谷氨酰胺的合成及生物学分布[J]. 中华核医学与分子影像杂志, 2016, 36(2): 112-115.   doi: 10.3760/cma.j.issn.2095-2848.2016.02.004
Tang CH, Tang GH, Gao SY, et al.  Synthesis of N-(2-18F-fluoropropionyl)-L-glutamine and its biodistribution study SY in mice[J]. Chin J Nucl Med Mol Imaging, 2016, 36(2): 112-115.   doi: 10.3760/cma.j.issn.2095-2848.2016.02.004
[31] Jiang H, Schmit NR, Koenen AR, et al.  Safety, pharmacokinetics, metabolism and radiation dosimetry of 18F-tetrafluoroborate (18F-TFB) in healthy human subjects[J]. EJNMMI Res, 2017, 7(1): 90-.   doi: 10.1186/s13550-017-0337-5
[32] Boumezbeur F, Besret L, Valette J, et al.  Glycolysis versus TCA cycle in the primate brain as measured by combining 18F-FDG PET and 13C-NMR[J]. J Cereb Blood Flow Metab, 2005, 25(11): 1418-1423.   doi: 10.1038/sj.jcbfm.9600145
[33] Matsubara K, Watabe H, Kumakura Y, et al.  Sensitivity of kinetic macro parameters to changes in dopamine synthesis, storage, and metabolism: a simulation study for[18F]FDOPA PET by a model with detailed dopamine pathway[J]. Synapse, 2011, 65(8): 751-762.   doi: 10.1002/syn.20899
[34] Mukai H, Ozaki D, Cui Y, et al.  Quantitative evaluation of the improvement in the pharmacokinetics of a nucleic acid drug delivery system by dynamic PET imaging with 18F-incorporated oligodeoxynucleotides[J]. J Control Release, 2014, 180: 92-99.   doi: 10.1016/j.jconrel.2014.02.014
[35] 何晓坤.  18F-FETNIM的药代动力学: 一个适于PET显像的有潜力的乏氧标志物[J]. 国外医学: 放射医学核医学分册, 2002, 26(3): 120-121.
He XK.  Pharmacokinetics of 18F-FETNIM, a potential PET tracer of hypoxia markers[J]. Foreign Med Sci (Radia Med Nucl Med), 2002, 26(3): 120-121.
[36] Traxl A, Wanek T, Mairinger S, et al.  Breast Cancer Resistance Protein and P-Glycoprotein Influence In Vivo Disposition of 11C-Erlotinib[J]. J Nucl Med, 2015, 56(12): 1930-1936.   doi: 10.2967/jnumed.115.161273
[37] Langer O.  Use of PET Imaging to Evaluate Transporter-Mediated Drug-Drug Interactions[J]. J Clin Pharmacol, 2016, 56(Suppl 7): S143-156.   doi: 10.1002/jcph.722
[38] Bauer M, Matsuda A, Wulkersdorfer B, et al.  Influence of OATPs on hepatic disposition of erlotinib measured with positron emission tomography[J]. Clin Pharmacol Ther, 2018, 104(1): 139-147.   doi: 10.1002/cpt.888
[39] Takashima T, Wu C, Takashimahirano M, et al.  Evaluation of breast cancer resistance protein function in hepatobiliary and renal excretion using PET with 11C-SC-62807[J]. J Nucl Med, 2013, 54(2): 267-276.   doi: 10.2967/jnumed.112.110254
[40] Takashima T, Kitamura S, Wada Y, et al.  PET imaging-based evaluation of hepatobiliary transport in humans with (15R)-11C-TIC-Me[J]. J Nucl Med, 2012, 53(5): 741-748.   doi: 10.2967/jnumed.111.098681
[41] Wanek T, Römermann K, Mairinger S, et al.  Factors Governing P-Glycoprotein-Mediated Drug-Drug Interactions at the Blood-Brain Barrier Measured with Positron Emission Tomography[J]. Mol Pharm, 2015, 12(9): 3214-3225.   doi: 10.1021/acs.molpharmaceut.5b00168
[42] Bergström M, Långström B.  Pharmacokinetic studies with PET[J]. Prog Drug Res, 2005, 62: 279-317.
[43] Cunha L, Szigeti K, Mathé D, et al.  The role of molecular imaging in modern drug development[J]. Drug Discovery Today, 2014, 19(7): 936-948.   doi: 10.1016/j.drudis.2014.01.003