[1] Zhao D, Liu J, Wang M, et al.  Epidemiology of cardiovascular disease in China: current features and implications[J]. Nat Rev Cardiol, 2019, 16(4): 203-212.   doi: 10.1038/s41569-018-0119-4
[2] Libby P.  Mechanisms of acute coronary syndromes and their implications for therapy[J]. N Engl J Med, 2013, 368(21): 2004-2013.   doi: 10.1056/NEJMra1216063
[3] 朱汉华.  冠状动脉易损斑块的炎症标志物的研究进展[J]. 中国循环杂志, 2017, 32(5): 518-520.   doi: 10.3969/j.issn.1000-3614.2017.05.023
Zhu HH.  Research progress in inflammation markers of vulnerable plaque of coronary artery[J]. Chin Circ J, 2017, 32(5): 518-520.   doi: 10.3969/j.issn.1000-3614.2017.05.023
[4] Chen H, Chen LL, Liang RX, et al.  Ultrasound and magnetic resonance molecular imaging of atherosclerotic neovasculature with perfluorocarbon magnetic nanocapsules targeted against vascular endothelial growth factor receptor 2 in rats[J]. Mol Med Rep, 2017, 16(5): 5986-5996.   doi: 10.3892/mmr.2017.7314
[5] Kelly KA, Allport JR, Tsourkas A, et al.  Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticl[J]. Circ Res, 2005, 96(3): 327-336.   doi: 10.1161/01.RES.0000155722.17881.dd
[6]

Su T, Wang YB, Han D, et al. Multimodality imaging of angiogenesis in a rabbit atherosclerotic model by GEBP11 peptide targeted nanoparticles[J/OL]. Theranostics, 2017, 7(19): 4791−4804[2019-9-16]. http://www.thno.org/v07p4791.htm. DOI: 10.7150/thno.20767.

[7] Winter PM, Morawski AM, Caruthers SD, et al.  Molecular imaging of angiogenesis in early-stage atherosclerosis with αvβ3-integrin-targeted nanoparticles[J]. Circulation, 2003, 108(18): 2270-2274.   doi: 10.1161/01.CIR.0000093185.16083.95
[8] Ji R, Li XY, Zhou C, et al.  Identifying macrophage enrichment in atherosclerotic plaques by targeting dual-modal US imaging/MRI based on biodegradable Fe-doped hollow silica nanospheres conjugated with anti-CD68 antibody[J]. Nanoscale, 2018, 10(43): 20246-20255.   doi: 10.1039/c8nr04703k
[9] Segers FM, den Adel B, Bot I, et al.  Scavenger receptor-AⅠ-targeted iron oxide nanoparticles for in vivo MRI detection of atherosclerotic lesions[J]. Arterioscler Thromb Vasc Biol, 2013, 33(8): 1812-1819.   doi: 10.1161/ATVBAHA.112.300707
[10] Wang JH, Wu ML, Chang J, et al.  Scavenger receptor-AⅠ-targeted ultrasmall gold nanoclusters facilitate in vivo MR and ex vivo fluorescence dual-modality visualization of vulnerable atherosclerotic plaques[J]. Nanomedicine, 2019, 19: 81-94.   doi: 10.1016/j.nano.2019.04.003
[11] Ye M, Zhou J, Zhong YX, et al.  SR-A-targeted phase-transition nanoparticles for the detection and treatment of atherosclerotic vulnerable plaques[J]. ACS Appl Mater Interfaces, 2019, 11(10): 9702-9715.   doi: 10.1021/acsami.8b18190
[12] Seo JW, Baek H, Mahakian LM, et al.  64Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque[J]. Bioconjug Chem, 2014, 25(2): 231-239.   doi: 10.1021/bc400347s
[13] Qiao HY, Wang YB, Zhang RH, et al.  MRI/optical dual-modality imaging of vulnerable atherosclerotic plaque with an osteopontin-targeted probe based on Fe3O4 nanoparticles[J]. Biomaterials, 2017, 112: 336-345.   doi: 10.1016/j.biomaterials.2016.10.011
[14] Luehmann HP, Detering L, Fors BP, et al.  PET/CT imaging of chemokine receptors in inflammatory atherosclerosis using targeted nanoparticles[J]. J Nucl Med, 2016, 57(7): 1124-1129.   doi: 10.2967/jnumed.115.166751
[15] 蒋莹, 范金茹.  基质金属蛋白酶-9在ACS中的意义及其治疗进展[J]. 中西医结合心脑血管病杂志, 2009, 7(8): 948-949.   doi: 10.3969/j.issn.1672-1349.2009.08.034
Jiang Y, Fan JR.  The significance and therapeutic progress of MMP-9 in ACS[J]. Chi J Int Med Cardio/Cervas Dis, 2009, 7(8): 948-949.   doi: 10.3969/j.issn.1672-1349.2009.08.034
[16] 何晓芬, 张茁.  细胞凋亡与动脉粥样硬化斑块稳定性关系的研究进展[J]. 中华老年心脑血管病杂志, 2008, 10(12): 955-956.   doi: 10.3969/j.issn.1009-0126.2008.12.030
He XF, Zhang Z.  Research progress on relationship between cell apoptosis and artherosclerotic plaque stability[J]. Chin J Geriatr Heart Brain Vessel Dis, 2008, 10(12): 955-956.   doi: 10.3969/j.issn.1009-0126.2008.12.030
[17]

Hakimzadeh N, Pinas VA, Molenaar G, et al. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques[J/OL]. PLoS One, 2017, 12(11): e0187767[2019-09-16]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187767. DOI: 10.1371/journal.pone.0187767.

[18] Schellenberger E, Rudloff F, Warmuth C, et al.  Protease-specific nanosensors for magnetic resonance imaging[J]. Bioconjug Chem, 2008, 19(12): 2440-2445.   doi: 10.1021/bc800330k
[19] Nahrendorf M, Waterman P, Thurber G, et al.  Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors[J]. Arterioscler Thromb Vasc Biol, 2009, 29(10): 1444-1451.   doi: 10.1161/atvbaha.109.193086
[20] Cheng DF, Li X, Zhang CF, et al.  Detection of vulnerable atherosclerosis plaques with a dual-modal single-photon-emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages[J]. ACS Appl Mater Interfaces, 2015, 7(4): 2847-2855.   doi: 10.1021/am508118x
[21] Hu Y, Liu GB, Zhang H, et al.  A comparison of [99mTc]Duramycin and [99mTc]Annexin V in SPECT/CT imaging atherosclerotic plaques[J]. Mol Imaging Biol, 2018, 20(2): 249-259.   doi: 10.1007/s11307-017-1111-9
[22] Makowski MR, Forbes SC, Blume U, et al.  In vivo assessment of intraplaque and endothelial fibrin in ApoE-/- mice by molecular MRI[J]. Atherosclerosis, 2012, 222(1): 43-49.   doi: 10.1016/j.atherosclerosis.2012.01.008
[23]

Obermeyer AC, Capehart SL, Jarman JB, et al. Multivalent viral capsids with internal cargo for fibrin imaging[J/OL]. PLoS One, 2014, 9(6): e100678[2019-09-16]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100678. DOI: 10.1371/journal.pone.0100678.

[24] McCarthy JR, Patel P, Botnaru I, et al.  Multimodal nanoagents for the detection of intravascular thrombi[J]. Bioconjug Chem, 2009, 20(6): 1251-1255.   doi: 10.1021/bc9001163
[25] Ta HT, Li Z, Hagemeyer CE, et al.  Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast[J]. Biomaterials, 2017, 134: 31-42.   doi: 10.1016/j.biomaterials.2017.04.037
[26] Kwon SP, Jeon S, Lee SH, et al.  Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging[J]. Biomaterials, 2018, 150: 125-136.   doi: 10.1016/j.biomaterials.2017.10.017