[1] 张艳容.动脉粥样硬化斑块显像研究进展.国外医学·放射医学核医学分册,2004,28(3):109-113.
[2] Lederman R J, Rayhnan RR, Fisher SJ, et al. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG). Nucl Med Colnmun, 2001, 22(7):747-753.
[3] Yun M, Yell D, Araujo LI, et al. F-18 FDG uptake in the large arteries:a new observatiou. Clin Nucl Med, 2001, 26(4):314-319.
[4] Hanif MZ, Ghesani M, Shah AA, et al. F-18 fluorodeoxyglucose uptake in atheroselerotic plaque in the mediastinum mimicking malignancy:another potential for error. Clin Nucl Med, 2004, 29(2):93-95.
[5] Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with[18F]-fluorodeoxyglucose positron emission tomography. Circulatiml, 2002, 105(23):2708-2711.
[6] Ogawa M, Ishino S, Mukai T, et al. (18)F-FDG accumulation in atherosclerotic plaques:immunohistochemical and PET imaging study. J Nucl Med, 2004, 45(7):1245-1250.
[7] Davies JR, Rudd JH, Flyer TD, et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolutlon magnetic resonance imaging. Stroke, 2005, 36(12):2642-2647.
[8] Hardoff R. Zanzonieo P. Braegehnann F, et al. Localization of (99m) Tc-labeled ApoB synthetic peptide in arterial lesions of an experimental model of spontaneous atheroselerosis. Am J Ther, 1995, 2(2):88-99.
[9] Bugiardini R, Manfrini O, Pizzi C, et al. Endothelial function predicls future development of coronary artery disease:a study of women with chest pain and normal coronary angiograms. Circulation, 2004, 109(21):2518-2523.
[10] Tepe G, Duda SH. Meding J, et al. Tc-99m-labeled endothelin derivative for imaging of experimentally induced atherosclerosis. Atherosclerosis, 2001, 157(2):383-392.
[11] Sakuma T, Sklenar J, Leong-Poi H, et al. Molecular imaging identifies regions with microthromboemboli during primaly angioplasty in acute coronary thrombosis. J Nucl Med, 2004; 45(7):1194-1200.
[12] Elmaleh DR, Napala J, Babich JW, et al. Rapid noninvasive detection of experimental atherosclerotic lesion with novel 99mTc-labeled diadenosine tetraphosphates. Proc Natl Acad Sci USA,1998, 95(2):691-695.
[13] Tsinlikas S. Noninvasive imaging of oxidized low-density lipoprotein in atherosclerotic plaques with tagged oxidation-specific antibodies. Am J Cardiol, 2002; 90(10C):22L-27L.
[14] Matter CM, Sehuler PK, Alseeip, et al. Molecular imaging of atherosclerotlc plaques using a human antibody against the extradomain B of fibroneetin. Cire Res, 2004, 95(12):1225-1233.
[15] Johnson LL, Schofieht L, Donahay T, et al. 99mTc-annexln V imaging for in vivo deteetion of atherosclerotic lesions in porcine coronary, arteries. J Nucl Med, 2005, 46(7):1186-1193.
[16] lsobe S, Tsimikas S, Zhou J, et al. Noninvasive imaging of atherosclerotic lesions in apolipoprotein E-deficient and low-densitylipoprotein receptor-deficient mice with annexin A5. J Nuel Med, 2006, 47(9):1497-1505.
[17] Qin GM, Zhang YX, An Rui, et al. Technetium-99m labeled antisense probes uptake in vascular smooth muscle cells. Asian J Nucl Med, 2005, 5(1):8-12.
[18] Zhang YR, Zhang YX, Cao W, et al. Uptake kitletics of 99mTc-MAG3-antisense oligonucleotide to PCNA and effect on gene expression in vascular smooth muscle cells. J Nucl Med, 2005, 46(6):1052-1058.
[19] Zaret BL. Second Annual Mario S. Verani, MD, Memorial lecture:nuclear cardiology, the next 10 years. J Nucl Cardiol, 2004, 11(4):393-407.