[1] Soloviev AI, Kizub IV.  Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction[J]. Biochem Pharmacol, 2019, 159: 121-139.   doi: 10.1016/j.bcp.2018.11.019
[2] Adams MJ, Lipsitz SR, Colan SD, et al.  Cardiovascular status in long-term survivors of Hodgkin's disease treated with chest radiotherapy[J]. J Clin Oncol, 2004, 22(15): 3139-3148.   doi: 10.1200/JCO.2004.09.109
[3] Darby SC, McGale P, Taylor CW, et al.  Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300 000 women in US SEER cancer registries[J]. Lancet Oncol, 2005, 6(8): 557-565.   doi: 10.1016/S1470-2045(05)70251-5
[4] Wethal T, Nedregaard B, Andersen R, et al.  Atherosclerotic lesions in lymphoma survivors treated with radiotherapy[J]. Radiother Oncol, 2014, 110(3): 448-454.   doi: 10.1016/j.radonc.2013.10.029
[5] Kim SB, Heo JI, Kim H, et al.  Acetylation of PGC1α by histone deacetylase 1 downregulation is implicated in radiation-induced senescence of brain endothelial cells[J]. J Gerontol A Biol Sci Med Sci, 2019, 74(6): 787-793.   doi: 10.1093/gerona/gly167
[6]

McRobb LS, McKay MJ, Gamble JR, et al. Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence[J/OL]. Aging, 2017, 9(4): 1248−1268[2020-06-29]. https://www.aging-us.com/article/101225/text. DOI: 10.18632/aging.101225.

[7]

Krüger-Genge A, Blocki A, Franke RP, et al. Vascular endothelial cell biology: an update[J/OL]. Int J Mol Sci, 2019, 20(18): 4411[2020-06-29]. https://www.mdpi.com/1422-0067/20/18/4411. DOI: 10.3390/ijms20184411.

[8]

Bautista-Niño PK, Portilla-Fernandez E, Vaughan DE, et al. DNA damage: a main determinant of vascular aging[J/OL]. Int J Mol Sci, 2016, 17(5): 748[2020-06-29]. https://www.mdpi.com/1422-0067/17/5/748. DOI: 10.3390/ijms17050748.

[9] Minamino T, Miyauchi H, Yoshida T, et al.  Endothelial cell senescence in human atherosclerosis: role of telomeres in endothelial dysfunction[J]. J Cardiol, 2003, 41(1): 39-40.
[10] Kurz DJ, Decary S, Hong Y, et al.  Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells[J]. J Cell Sci, 2004, 117(11): 2417-2426.   doi: 10.1242/jcs.01097
[11] Gorgoulis V, Adams PD, Alimonti A, et al.  Cellular senescence: defining a path forward[J]. Cell, 2019, 179(4): 813-827.   doi: 10.1016/j.cell.2019.10.005
[12] Yentrapalli R, Azimzadeh O, Barjaktarovic Z, et al.  Quantitative proteomic analysis reveals induction of premature senescence in human umbilical vein endothelial cells exposed to chronic low-dose rate gamma radiation[J]. Proteomics, 2013, 13(7): 1096-1107.   doi: 10.1002/pmic.201200463
[13]

Aratani S, Tagawa M, Nagasaka S, et al. Radiation-induced premature cellular senescence involved in glomerular diseases in rats[J/OL]. Sci Rep, 2018, 8(1): 16812[2020-06-29]. https://www.nature.com/articles/s41598-018-34893-8. DOI: 10.1038/s41598-018-34893-8.

[14] Kim KS, Kim JE, Choi KJ, et al.  Characterization of DNA damage-induced cellular senescence by ionizing radiation in endothelial cells[J]. Int J Radiat Biol, 2014, 90(1): 71-80.   doi: 10.3109/09553002.2014.859763
[15]

Baselet B, Belmans N, Coninx E, et al. Functional gene analysis reveals cell cycle changes and inflammation in endothelial cells irradiated with a single X-ray dose[J/OL]. Front Pharmacol, 2017, 8: 213[2020-06-29]. https://www.frontiersin.org/articles/10.3389/fphar.2017.00213/full. DOI: 10.3389/fphar.2017.00213.

[16] Azimzadeh O, Subramanian V, Ständer S, et al.  Proteome analysis of irradiated endothelial cells reveals persistent alteration in protein degradation and the RhoGDI and NO signalling pathways[J]. Int J Radiat Biol, 2017, 93(9): 920-928.   doi: 10.1080/09553002.2017.1339332
[17]

Imaizumi N, Monnier Y, Hegi M, et al. Radiotherapy suppresses angiogenesis in mice through TGF-βRI/ALK5-dependent inhibition of endothelial cell sprouting[J/OL]. PLoS One, 2010, 5(6): e11084[2020-06-29]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011084. DOI: 10.1371/journal.pone.0011084.

[18]

Park H, Kim CH, Jeong JH, et al. GDF15 contributes to radiation-induced senescence through the ROS-mediated p16 pathway in human endothelial cells[J/OL]. Oncotarget, 2016, 7(9): 9634−9644[2020-06-29]. https://www.oncotarget.com/article/7457/text. DOI: 10.18632/oncotarget.7457.

[19] Marampon F, Gravina GL, Festuccia C, et al.  Vitamin D protects endothelial cells from irradiation-induced senescence and apoptosis by modulating MAPK/SirT1 axis[J]. J Endocrinol Invest, 2016, 39(4): 411-422.   doi: 10.1007/s40618-015-0381-9
[20] Wu K, Chen ZJ, Peng Q, et al.  Ku86 alleviates human umbilical vein endothelial cellular apoptosis and senescence induced by a low dose of ionizing radiation[J]. J Int Med Res, 2019, 47(2): 893-904.   doi: 10.1177/0300060518805302
[21]

Yentrapalli R, Azimzadeh O, Sriharshan A, et al. The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation[J/OL]. PLoS One, 2013, 8(8): e70024[2020-06-29]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070024. DOI: 10.1371/journal.pone.0070024.

[22]

Panganiban RAM, Day RM. Inhibition of IGF-1R prevents ionizing radiation-induced primary endothelial cell senescence[J/OL]. PLoS One, 2013, 8(10): e78589[2020-06-29]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078589. DOI: 10.1371/journal.pone.0078589.

[23] Rombouts C, Aerts A, Quintens R, et al.  Transcriptomic profiling suggests a role for IGFBP5 in premature senescence of endothelial cells after chronic low dose rate irradiation[J]. Int J Radiat Biol, 2014, 90(7): 560-574.   doi: 10.3109/09553002.2014.905724
[24]

Heo JI, Kim KI, Woo SK, et al. Stromal cell-derived factor 1 protects brain vascular endothelial cells from radiation-induced brain damage[J/OL]. Cells, 2019, 8(10): 1230[2020-06-29]. https://www.mdpi.com/2073-4409/8/10/1230. DOI: 10.3390/cells8101230.

[25] Dong XR, Tong F, Qian C, et al.  NEMO modulates radiation-induced endothelial senescence of human umbilical veins through NF-κB signal pathway[J]. Radiat Res, 2015, 183(1): 82-93.   doi: 10.1667/RR13682.1
[26] Lafargue A, Degorre C, Corre I, et al.  Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex Ⅱ dysfunction and superoxide generation[J]. Free Radic Biol Med, 2017, 108: 750-759.   doi: 10.1016/j.freeradbiomed.2017.04.019
[27]

Espinosa-Diez C, Wilson R, Chatterjee N, et al. MicroRNA regulation of the MRN complex impacts DNA damage, cellular senescence, and angiogenic signaling[J/OL]. Cell Death Dis, 2018, 9(6): 632[2020-06-29]. https://www.nature.com/articles/s41419-018-0690-y. DOI: 10.1038/s41419-018-0690-y.

[28] Lowe D, Raj K.  Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression[J]. Aging Cell, 2014, 13(5): 900-910.   doi: 10.1111/acel.12253
[29]

Taunk NK, Haffty BG, Kostis JB, et al. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms[J/OL]. Front Oncol, 2015, 5: 39[2020-06-29]. https://www.frontiersin.org/articles/10.3389/fonc.2015.00039/full. DOI: 10.3389/fonc.2015.00039.

[30] Ungvari Z, Podlutsky A, Sosnowska D, et al.  Ionizing radiation promotes the acquisition of a senescence-associated secretory phenotype and impairs angiogenic capacity in cerebromicrovascular endothelial cells: role of increased DNA damage and decreased DNA repair capacity in microvascular raDIOsensitivity[J]. J Gerontol A Biol Sci Med Sci, 2013, 68(12): 1443-1457.   doi: 10.1093/gerona/glt057