[1] Ziadi MC.  Myocardial flow reserve (MFR) with positron emission tomography (PET)/computed tomography (CT): clinical impact in diagnosis and prognosis[J]. Cardiovasc Diagn Ther, 2017, 7(2): 206-218.   doi: 10.21037/cdt.2017.04.10
[2] 中华医学会核医学分会.  2018年全国核医学现状普查结果简报[J]. 中华核医学与分子影像杂志, 2018, 38(12): 813-814.   doi: 10.3760/cma.j.issn.2095-2848.2018.12.010
Chinese Society of Nuclear Medicine.  A brief report on the results of the national survey of nuclear medicine in 2018[J]. Chin J Nucl Med Mol Imaging, 2018, 38(12): 813-814.   doi: 10.3760/cma.j.issn.2095-2848.2018.12.010
[3] Sugihara H, Yonekura Y, Kataoka K, et al.  Estimation of coronary flow reserve with the use of dynamic planar and SPECT images of Tc-99m tetrofosmin[J]. J Nucl Cardiol, 2001, 8(5): 575-579.   doi: 10.1067/mnc.2001.115934
[4] Taki J, Fujino S, Nakajima K, et al.  99mTc-sestamibi retention characteristics during pharmacologic hyperemia in human myocardium: comparison with coronary flow reserve measured by Doppler flowire[J]. J Nucl Med, 2001, 42(10): 1457-1463.
[5] Ito Y, Katoh C, Noriyasu K, et al.  Estimation of myocardial blood flow and myocardial flow reserve by 99mTc-sestamibi imaging: comparison with the results of [15O]H2O PET[J]. Eur J Nucl Med Mol Imaging, 2003, 30(2): 281-287.   doi: 10.1007/s00259-002-1031-y
[6] Storto G, Cirillo P, Vicario ML, et al.  Estimation of coronary flow reserve by Tc-99m sestamibi imaging in patients with coronary artery disease: comparison with the results of intracoronary Doppler technique[J]. J Nucl Cardiol, 2004, 11(6): 682-688.   doi: 10.1016/j.nuclcard.2004.08.007
[7] Pellegrino T, Storto G, Filardi PP, et al.  Relationship between brachial artery flow-mediated dilation and coronary flow reserve in patients with peripheral artery disease[J]. J Nucl Med, 2005, 46(12): 1997-2002.
[8] Daniele S, Nappi C, Acampa W, et al.  Incremental prognostic value of coronary flow reserve assessed with single-photon emission computed tomography[J]. J Nucl Cardiol, 2011, 18(4): 612-619.   doi: 10.1007/s12350-011-9345-4
[9] Apostolopoulos DJ, Kaspiri A, Spyridonidis T, et al.  Assessment of absolute Tc-99m tetrofosmin retention in the myocardium as an index of myocardial blood flow and coronary flow reserve by gated-SPECT/CT: a feasibility study[J]. Ann Nucl Med, 2015, 29(7): 588-602.   doi: 10.1007/s12149-015-0982-6
[10] Nose N, Fukushima K, Lapa C, et al.  Assessment of coronary flow reserve using a combination of planar first-pass angiography and myocardial SPECT: Comparison with myocardial 15O-water PET[J]. Int J Cardiol, 2016, 222: 209-212.   doi: 10.1016/j.ijcard.2016.07.183
[11] Iida H, Eberl S, Kim KM, et al.  Absolute quantitation of myocardial blood flow with 201Tl and dynamic SPECT in canine: optimisation and validation of kinetic modelling[J]. Eur J Nucl Med Mol Imaging, 2008, 35(5): 896-905.   doi: 10.1007/s00259-007-0654-4
[12] Shrestha U, Sciammarella M, Alhassen F, et al.  Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: Method and validation[J]. J Nucl Cardiol, 2017, 24(1): 268-277.   doi: 10.1007/s12350-015-0320-3
[13] Ben-Haim S, Murthy VL, Breault C, et al.  Quantification of Myocardial Perfusion Reserve Using Dynamic SPECT Imaging in Humans: A Feasibility Study[J]. J Nucl Med, 2013, 54(6): 873-879.   doi: 10.2967/jnumed.112.109652
[14] Sharir T, Slomka PJ, Berman DS.  Solid-state SPECT technology: fast and furious[J]. J Nucl Cardiol, 2010, 17(5): 890-896.   doi: 10.1007/s12350-010-9284-5
[15] Esteves FP, Galt JR, Folks RD, et al.  Diagnostic performance of low-dose rest/stress Tc-99m tetrofosmin myocardial perfusion SPECT using the 530c CZT camera: quantitative vs visual analysis[J]. J Nucl Cardiol, 2014, 21(1): 158-165.   doi: 10.1007/s12350-013-9827-7
[16] Sharir T, Pinskiy M, Pardes A, et al.  Comparison of the diagnostic accuracies of very low stress-dose with standard-dose myocardial perfusion imaging: Automated quantification of one-day, stress-first SPECT using a CZT camera[J]. J Nucl Cardiol, 2016, 23(1): 11-20.   doi: 10.1007/s12350-015-0130-7
[17] Gullberg GT, Reutter BW, Sitek A, et al.  Dynamic single photon emission computed tomography—basic principles and cardiac applications[J]. Phys Med Biol, 2010, 55(20): R111-191.   doi: 10.1088/0031-9155/55/20/R01
[18] Winant CD, Aparici CM, Zelnik YR, et al.  Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies[J]. Phys Med Biol, 2012, 57(2): 375-393.   doi: 10.1088/0031-9155/57/2/375
[19] Nkoulou R, Fuchs TA, Pazhenkottil AP, et al.  Absolute Myocardial Blood Flow and Flow Reserve Assessed by Gated SPECT with Cadmium-Zinc-Telluride Detectors Using 99mTc-Tetrofosmin: Head-to-Head Comparison with 13N-Ammonia PET[J]. J Nucl Med, 2016, 57(12): 1887-1892.   doi: 10.2967/jnumed.115.165498
[20] Agostini D, Roule V, Nganoa C, et al.  First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study[J]. Eur J Nucl Med Mol Imaging, 2018, 45(7): 1079-1090.   doi: 10.1007/s00259-018-3958-7
[21] Miyagawa M, Nishiyama Y, Uetani T, et al.  Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: Comparison with coronary angiography, fractional flow reserve, and the SYNTAX score[J]. Int J Cardiol, 2017, 244: 347-353.   doi: 10.1016/j.ijcard.2017.06.012
[22]

Daquarti G, Meretta AH, Rosa D, et al. ASSESSMENT OF EXERCISE CORONARY FLOW RESERVE WITH CADMIUM ZINC TELLURIDE GAMMA CAMERA[J/OL]. J Am Coll Cardiol, 2018, 71(11): A1503[2018-06-22]. https://www.researchgate.net/publication/236908429_Gender_differences_in_the_evaluation_of_coronary_artery_disease_with_a_cadmium-zinc_telluride_camera. DOI: 10.1016/S0735−1097(18)32044-8.

[23]

Fang YD, Liu YC, Ho KC, et al. Single-scan rest/stress imaging with 99mTc-Sestamibi and cadmium zinc telluride-based SPECT for hyperemic flow quantification: A feasibility study evaluated with cardiac magnetic resonance imaging[J/OL]. PLoS One, 2017, 12(8): e0183402[2018-06-22]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183402. DOI: 10.1371/journal.pone.0183402.

[24]

Petretta M, Cuocolo R, Acampa W, et al. Quantification of Myocardial Perfusion: SPECT[J/OL]. Curr Cardiovasc Imaging Rep, 2012, 5(3): 144-150[2018-06-22]. https://link.springer.com/article/10.1007/s12410-012-9131-y. DOI: 10.1007/s12410-012-9131-y.

[25] Ben BF, Roubille F, Lattuca B, et al.  SPECT Myocardial Perfusion Reserve in Patients with Multivessel Coronary Disease: Correlation with Angiographic Findings and Invasive Fractional Flow Reserve Measurements[J]. J Nucl Med, 2015, 56(11): 1712-1717.   doi: 10.2967/jnumed.114.143164
[26] Ziadi MC, Dekemp RA, Williams K, et al.  Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease?[J]. J Nucl Cardiol, 2012, 19(4): 670-680.   doi: 10.1007/s12350-011-9506-5
[27] Leccisotti L, Lavalle M, Giordano A.  Clinical relevance of PET myocardial blood flow quantification[J]. Q J Nucl Med Mol Imaging, 2016, 60(4): 338-353.
[28] Parkash R, deKemp RA, Ruddy TD, et al.  Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease[J]. J Nucl Cardiol, 2004, 11(4): 440-449.   doi: 10.1016/j.nuclcard.2004.04.005
[29] Murthy VL, Naya M, Foster CR, et al.  Improved cardiac risk assessment with noninvasive measures of coronary flow reserve[J]. Circulation, 2011, 124(20): 2215-2224.   doi: 10.1161/CIRCULATIONAHA.111.050427
[30] Djaïleb L, Riou L, Piliero N, et al.  SPECT myocardial ischemia in the absence of obstructive CAD: Contribution of the invasive assessment of microvascular dysfunction[J]. J Nucl Cardiol, 2018, 25(3): 1017-1022.   doi: 10.1007/s12350-017-1135-1
[31]

Feher A, Sinusas AJ. Quantitative Assessment of Coronary Microvascular Function: Dynamic Single-Photon Emission Computed Tomography, Positron Emission Tomography, Ultrasound, Computed Tomography, and Magnetic Resonance Imaging[J/OL]. Circ Cardiovasc Imaging, 2017, 10(8): pii: e006427[2018-06-22]. https://www.ncbi.nlm.nih.gov/pubmed/28794138. DOI: 10.1161/CIRCIMAGING.117.006427.

[32] Petretta M, Storto G, Pellegrino T, et al.  Quantitative Assessment of Myocardial Blood Flow with SPECT[J]. Prog Cardiovasc Dis, 2015, 57(6): 607-614.   doi: 10.1016/j.pcad.2014.12.007