[1] Bateman RJ, Xiong CJ, Benzinger TLS, et al.  Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease[J]. N Engl J Med, 2012, 367(9): 795-804.   doi: 10.1056/NEJMoa1202753
[2] Leuzy A, Chiotis K, Lemoine L, et al.  Tau PET imaging in neurodegenerative tauopathies-still a challenge[J]. Mol Psychiatry, 2019, 24(8): 1112-1134.   doi: 10.1038/s41380-018-0342-8
[3]

Uematsu M, Nakamura A, Ebashi M, et al. Brainstem tau pathology in Alzheimer′s disease is characterized by increase of three repeat tau and independent of amyloid β[J/OL]. Acta Neuropathol Commun, 2018, 6(1): 1[2019-10-23]. https://link.springer.com/article/10.1186/s40478-017-0501-1. DOI: 10.1186/s40478-017-0501-1.

[4] Park JC, Han SH, Yi D, et al.  Plasma tau/amyloid-β1-42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer's disease[J]. Brain, 2019, 142(3): 771-786.   doi: 10.1093/brain/awy347
[5] Smid LM, Kepe V, Vinters HV, et al.  Postmortem 3-D brain hemisphere cortical tau and amyloid-β pathology mapping and quantification as a validation method of neuropathology imaging[J]. J Alzheimers Dis, 2013, 36(2): 261-274.   doi: 10.3233/JAD-122434
[6] Chen ST, Siddarth P, Merrill DA, et al.  FDDNP-PET Tau Brain Protein Binding Patterns in Military Personnel with Suspected Chronic Traumatic Encephalopathy1[J]. J Alzheimers Dis, 2018, 65(1): 79-88.   doi: 10.3233/JAD-171152
[7] Kepe V, Bordelon Y, Boxer A, et al.  PET Imaging of Neuropathology in Tauopathies: Progressive Supranuclear Palsy[J]. J Alzheimers Dis, 2013, 36(1): 145-153.   doi: 10.3233/JAD-130032
[8] Fodero-Tavoletti MT, Okamura N, Furumoto S, et al.  18F-THK523: a novel in vivo tau imaging ligand for Alzheimer's disease[J]. Brain, 2011, 134(4): 1089-1100.   doi: 10.1093/brain/awr038
[9] Villemagne VL, Furumoto S, Fodero-Tavoletti MT, et al.  In vivo evaluation of a novel tau imaging tracer for Alzheimer's disease[J]. Eur J Nucl Med Mol Imaging, 2014, 41(5): 816-826.   doi: 10.1007/s00259-013-2681-7
[10] Harada R, Okamura N, Furumoto S, et al.  18F-THK5351: A Novel PET Radiotracer for Imaging Neurofibrillary Pathology in Alzheimer Disease[J]. J Nucl Med, 2016, 57(2): 208-214.   doi: 10.2967/jnumed.115.164848
[11] Betthauser TJ, Lao PJ, Murali D, et al.  In Vivo Comparison of Tau Radioligands 18F-THK-5351 and 18F-THK-5317[J]. J Nucl Med, 2017, 58(6): 996-1002.   doi: 10.2967/jnumed.116.182980
[12]

Ng KP, Pascoal TA, Mathotaarachchi S, et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain[J/OL]. Alzheimers Res Ther, 2017, 9(1): 25[2019-10-23]. https://link.springer.com/article/10.1186/s13195-017-0253-y. DOI: 10.1186/s13195-017-0253-y.

[13] Schaeverbeke J, Evenepoel C, Declercq L, et al.  Distinct [18F]THK5351 binding patterns in primary progressive aphasia variants[J]. Eur J Nucl Med Mol Imaging, 2018, 45(13): 2342-2357.   doi: 10.1007/s00259-018-4075-3
[14] Xia CF, Arteaga J, Chen G, et al.  [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease[J]. Alzheimers Dement, 2013, 9(6): 666-676.   doi: 10.1016/j.jalz.2012.11.008
[15] Chien DT, Szardenings AK, Bahri S, et al.  Early clinical PET imaging results with the novel PHF-tau radioligand[F18]-T808[J]. J Alzheimers Dis, 2014, 38(1): 171-184.   doi: 10.3233/JAD-130098
[16] Sanabria Bohórquez S, Marik J, Ogasawara A, et al.  [18F]GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer's disease[J]. Eur J Nucl Med Mol Imaging, 2019, 46(10): 2077-2089.   doi: 10.1007/s00259-019-04399-0
[17] Baker SL, Harrison TM, Maass A, et al.  Effect of off-target binding on 18F-Flortaucipir variability in healthy controls across the life span[J]. J Nucl Med, 2019, 60(10): 1444-1451.   doi: 10.2967/jnumed.118.224113
[18] Jang YK, Lyoo CH, Park S, et al.  Head to head comparison of [18F]AV-1451 and [18F]THK5351 for tau imaging in Alzheimer's disease and frontotemporal dementia[J]. Eur J Nucl Med Mol Imaging, 2018, 45(3): 432-442.   doi: 10.1007/s00259-017-3876-0
[19] Devous Sr MD, Joshi AD, Navitsky M, et al.  Test-Retest Reproducibility for the Tau PET Imaging Agent Flortaucipir F 18[J]. J Nucl Med, 2018, 59(6): 937-943.   doi: 10.2967/jnumed.117.200691
[20]

Timmers T, Ossenkoppele R, Wolters EE, et al. Associations between quantitative [18F]flortaucipir tau PET and atrophy across the Alzheimer's disease spectrum[J/OL]. Alzheimers Res Ther, 2019, 11(1): 60[2019-10-23]. https://alzres.biomedcentral.com/articles/10.1186/s13195-019-0510-3. DOI: 10.1186/s13195-019-0510-3.

[21] Ossenkoppele R, Smith R, Ohlsson T, et al.  Associations between tau, Aβ, and cortical thickness with cognition in Alzheimer disease[J]. Neurology, 2019, 92(6): e601-e612.   doi: 10.1212/WNL.0000000000006875
[22] Das SR, Xie L, Wisse LEM, et al.  In vivo measures of tau burden are associated with atrophy in early Braak stage medial temporal lobe regions in amyloid-negative individuals[J]. Alzheimers Dement, 2019, 15(10): 1286-1295.   doi: 10.1016/j.jalz.2019.05.009
[23] Cho H, Choi JY, Lee HS, et al.  Progressive Tau Accumulation in Alzheimer Disease: 2-Year Follow-up Study[J]. J Nucl Med, 2019, 60(11): 1611-1621.   doi: 10.2967/jnumed.118.221697
[24] Wood H.  Alzheimer disease: [11C]PBB3−a new PET ligand that identifies tau pathology in the brains of patients with AD[J]. Nat Rev Neurol, 2013, 9(11): 599-.   doi: 10.1038/nrneurol.2013.216
[25] Maruyama M, Shimada H, Suhara T, et al.  Imaging of Tau Pathology in a Tauopathy Mouse Model and in Alzheimer Patients Compared to Normal Controls[J]. Neuron, 2013, 79(6): 1094-1108.   doi: 10.1016/j.neuron.2013.07.037
[26] Kimura Y, Ichise M, Ito H, et al.  PET Quantification of Tau Pathology in Human Brain with 11C-PBB3[J]. J Nucl Med, 2015, 56(9): 1359-1365.   doi: 10.2967/jnumed.115.160127
[27]

Kimura Y, Endo H, Ichise M, et al. A new method to quantify tau pathologies with 11C-PBB3 PET using reference tissue voxels extracted from brain cortical gray matter[J/OL]. EJNMMI Res, 2016, 6(1): 24[2019-10-23]. https://ejnmmires.springeropen.com/articles/10.1186/s13550-016-0182-y. DOI: 10.1186/s13550-016-0182-y.

[28] Ono M, Sahara N, Kumata K, et al.  Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies[J]. Brain, 2017, 140(3): 764-780.   doi: 10.1093/brain/aww339
[29] Shimada H, Kitamura S, Ono M, et al.  First-in-human pet study with 18F-am-pbb3 and 18F-pm-pbb3[J]. Alzheimers Dement, 2017, 13(7): P146-.   doi: 10.1016/j.jalz.2017.06.2573
[30] Walji AM, Hostetler ED, Selnick H, et al.  Discovery of 6-(Fluoro-18F)-3-(1H-pyrrolo[2, 3-c]pyridin-1-yl) isoquinolin-5-amine ([18F]-MK-6240): A Positron Emission Tomography (PET) Imaging Agent for Quantification of Neurofibrillary Tangles (NFTs)[J]. J Med Chem, 2016, 59(10): 4778-4789.   doi: 10.1021/acs.jmedchem.6b00166
[31]

Pascoal TA, Shin M, Kang MS, et al. In vivo quantification of neurofibrillary tangles with [18F]MK-6240[J/OL]. Alzheimers Res Ther, 2018, 10(1): 74[2019-10-23]. https://alzres.biomedcentral.com/articles/10.1186/s13195-018-0402-y. DOI: 10.1186/s13195-018-0402-y.

[32] Lohith TG, Bennacef I, Vandenberghe R, et al.  Brain Imaging of Alzheimer Dementia Patients and Elderly Controls with 18F-MK-6240, a PET Tracer Targeting Neurofibrillary Tangles[J]. J Nucl Med, 2019, 60(1): 107-114.   doi: 10.2967/jnumed.118.208215
[33] Betthauser TJ, Cody KA, Zammit MD, et al.  In Vivo Characterization and Quantification of Neurofibrillary Tau PET Radioligand 18F-MK-6240 in Humans from Alzheimer Disease Dementia to Young Controls[J]. J Nucl Med, 2019, 60(1): 93-99.   doi: 10.2967/jnumed.118.209650
[34] Gobbi LC, Knust H, Körner M, et al.  Identification of Three Novel Radiotracers for Imaging Aggregated Tau in Alzheimer's Disease with Positron Emission Tomography[J]. J Med Chem, 2017, 60(17): 7350-7370.   doi: 10.1021/acs.jmedchem.7b00632
[35] Honer M, Gobbi L, Knust H, et al.  Preclinical Evaluation of 18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 as Novel PET Radiotracers for Imaging Tau Aggregates in Alzheimer Disease[J]. J Nucl Med, 2018, 59(4): 675-681.   doi: 10.2967/jnumed.117.196741
[36] Kuwabara H, Comley RA, Borroni E, et al.  Evaluation of 18F-RO-948 PET for Quantitative Assessment of Tau Accumulation in the Human Brain[J]. J Nucl Med, 2018, 59(12): 1877-1884.   doi: 10.2967/jnumed.118.214437
[37] Murugan NA, Chiotis K, Rodriguez-Vieitez E, et al.  Cross-interaction of tau PET tracers with monoamine oxidase B: evidence from in silico modelling and in vivo imaging[J]. Eur J Nucl Med Mol Imaging, 2019, 46(6): 1369-1382.   doi: 10.1007/s00259-019-04305-8