[1] Pusztaszeri MP, Bongiovanni M, Faquin WC. Update on the cytologic and molecular features of medullary thyroid carcinoma[J]. Adv Anat Pathol, 2014, 21(1):26-35. DOI:10.1097/PAP.0000000000000004.
[2] Stamatakos M, Paraskeva P, Katsaronis P, et al. Surgical approach to the management of medullary thyroid cancer:when is lymph node dissection needed?[J].Oncology, 2013, 84(6):350-355. DOI:10.1159/000351148.
[3] Kazaure HS, Roman SA, Sosa A. Medullary thyroid microcarcinoma:a population-level analysis of 310 patients[J]. Cancer, 2012, 118(3):620-627. DOI:10.1002/cncr.26283.
[4] Bible KC, Ryder M. Evolving molecularly targeted therapies for advanced-stage thyroid cancers[J]. Nat Rev Clin Oncol, 2016, 13(7):403-416. DOI:10.1038/nrclinonc.2016.19.
[5]

NCCN. The NCCN clinical practice guidelines in oncology: thyroid carcinoma(version 2. 2017)[EB/OL]. [2017-01-02]. http://www.nccn.org/clinicaltrials/physician.html.

[6] Romei C, Ciampi R, Casella F, et al. RET mutation heterogeneity in primary advanced medullary thyroid cancers and their metastases[J]. Oncotarget, 2018, 9(11):9875-9884. DOI:10. 18632/oncotarget.23986.
[7] Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement[J]. Cell, 1985, 42(2):581-588. DOI:10.1016/0092-8674(85)90115-1.
[8] Pasini B, Hofstra RM, Yin L, et al. The physical map of the human RET proto-oncogene[J]. Oncogene, 1995, 11(9):1737-1743.
[9] Mulligan LM. RET revisited:expanding the oncogenic portfolio[J].Nat Rev Cancer, 2014, 14(3):173-186. DOI:10.1038/nrc3680.
[10] Mohammadi M, Hedayati M. A brief review on the molecular basis of medullary thyroid carcinoma[J]. Cell J, 2017, 18(4):485-492. DOI:10.22074/cellj.2016.4715.
[11] Figlioli G, Landi S, Romei C, et al. Medullary thyroid carcinoma(MTC) and RET, proto-oncogene:Mutation spectrum in the familial cases and a meta-analysis of studies on the sporadic form[J]. Mutat Res, 2013, 752(1):36-44. DOI:10.1016/j.mrrev.2012.09.002.
[12] Capp C, Wajner SM, Siqueira DR, et al. Increased expression of vascular endothelial growth factor and its receptors, VEGFR-1 and VEGFR-2, in medullary thyroid carcinoma[J]. Thyroid, 2010, 20(8):863-871. DOI:10.1089/thy.2009.0417.
[13] Abraham D, Jackson N, Gundara JS, et al. MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets[J]. Clin Cancer Res, 2011, 17(14):4772-4781. DOI:10.1158/1078-0432.CCR-11-0242.
[14] Zhu G, Xie L, Miller D. Expression of MicroRNAs in thyroid carcinoma[J]. Methods in Mol Biol, 2017, 1617:261-280. DOI:10.1007/978-1-4939-7046-9_19.
[15] 李寅辉. MicroRNA与甲状腺癌的关系[J].医学综述, 2014, 20(10):1732-1734. DOI:10.3969/j.issn.1006-2084.2014.10.002.
Li YH. The relationship between microRNA and thyroid cancer[J]. Med Recapit, 2014, 20(10):1732-1734.  doi: 10.3969/j.issn.1006-2084.2014.10.002
[16] Gundara JS, Zhao JT, Gill AJ, et al. Noncoding RNA blockade of autophagy is therapeutic in medullary thyroid cancer[J]. Cancer Med, 2015, 4(2):174-182. DOI:10.1002/cam4.355.
[17] Zhong WB, Liang YC, Wang CY, et al. Lovastatin suppresses invasiveness of anaplastic thyroid cancer cells by inhibiting Rho geranylgeranylation and RhoA/ROCK signaling[J]. Endocr Relat Cancer, 2005, 12(3):615-629. DOI:10.1677/erc.1.01012.
[18] 汪颖厚, 陈安杰, 王斌, 等. RHOA/ROCK-2信号通路在甲状腺髓样癌中的表达及意义[J].中国医科大学学报, 2014, 43(4):365-367.
Wang YH, Chen AJ, Wang B, et al. Expression of RHOA/ROCK-2 signaling pathway in medullary thyroid carcinoma and its clinical significance[J]. J China Med Univ, 2014, 43(4):365-367.
[19] Maxwell JE, Sherman SK, O'dorisio TM. Medical management of metastatic medullary thyroid cancer[J]. Cancer, 2014, 120(21):3287-3301. DOI:10.1002/cncr.28858.
[20] Kim BH, Kim IJ. Recent updates on the management of medullary thyroid carcinoma[J]. Endocrinol Metabo(Seoul), 2016, 31(3):392-399. DOI:10.3803/EnM. 2016.31.3.392.
[21] Wells J, Robinson BG, Gagel RF, et al.Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer:a randomized, Double-Blind phase Ⅲ trial[J]. J Clin Oncol, 2012, 30(2):134-141. DOI:10.1200/JCO.2011.35.5040.
[22] Chau NG, Haddad RI. Vandetanib for the treatment of medullary thyroid cancer[J]. Clin Cancer Res, 2013, 19(3):524-529. DOI:10.1158/1078-0432.CCR-12-2353.
[23] Chatal JF, Kraeber-Bodere F, Goldenberg DM. Treatment of metastatic medullary thyroid cancer with vandetanib:need to stratify patients on basis of calcitonin doubling time[J]. J Clin Oncol, 2012, 30(17):2165. DOI:10.1200/JCO.2012.42.3160.
[24] Tsang VH, Robinson BG, Learoyd DL.The safety of vandetanib for the treatment of thyroid cancer[J]. Expert Opin Drug Saf, 2016, 15(8):1107-1113. DOI:10.1080/14740338.2016.1201060.
[25] Bentznen F, Zuzow M, Heald N, et al. In vitro and in vivo activity of cabozantinib(XLl 84), an inhibitor of RET, Met, and VEGFR2, in a model of medullary thyroid cancer[J]. Thyroid, 2013, 23(12):1569-1577. DOI:10.1089/thy. 2013.0137.
[26] Viola D, Cappagli V, Elisei R. Cabozantinib (XL184) for the treatment of locally advanced or metastatic progressive medullary thyroid cancer[J]. Future Oncol, 2013, 9(8):1083-1092. DOI:10.2217/FON.13.128.
[27] Elisei R, Schlumberger MJ, Müller SP, et al. Cabozantinib in progressive medullary thyroid cancer[J]. J Clin Oncol, 2013, 31(29):3639-3646. DOI:10.1200/JCO.2012.48.4659.
[28] 秦建武.精准医疗在甲状腺癌中的临床应用与展望[J].医学与哲学, 2016, 37(10B):772-1002. DOI:10.12014/j.issn.1002-0772. 2016.10b.03.
Qin JW. Clinical application and prospect of precision medicine in thyroid cancer[J]. Med Philos, 2016, 37(10B):772-1002.  doi: 10.12014/j.issn.1002-0772.2016.10b.03
[29] Ferrari SM, Politti U, Spisni RA, et al. Sorafenib in the treatment of thyroid cancer[J]. Expert Rev Anticancer Ther, 2015, 15(8):863-874. DOI:10.1586/14737140.2015.1064770.
[30] De Castroneves LA, Negrao MV, Costa De Freitas RM, et al.Sorafenib for the treatment of progressive metastatic medullary thyroid cancer:efficacy and safety analysis[J]. Thyroid, 2016, 26(3):414-419. DOI:10.1089/thy.2015.0334.
[31] Bible KC, Suman VJ, Molina JR, et al. A multicenter international phase 2 trial of pazopanib in metastatic and progressive medullary thyroid carcinoma:MC057H[J]. J Clin Endocrinol Metab, 2014, 99(5):1687-1693. DOI:10.1210/jc.2013-3713.
[32] Perri F, Pezzullo L, Chiofalo MG, et al.Targeted therapy:a new hope for thyrold carcinomas[J]. Crit Rev Oncol Hematol, 2015, 94(1):55-63.  doi: 10.1016/j.critrevonc.2014.10.012
[33] Ravaud A, De La Fouchardiere C, Asselineau J, et al. Efficacy of sunitinib in advanced medullary thyroid carcinoma:intermediate results of phase Ⅱ THYSU[J]. Oncologist, 2010, 15(2):212-213. DOI:10.1634/theoncologist. 2009-0303.
[34] Krajewska J, Kukulska A, Jarzab B. Efficacy of lenvatinib in treating thyroid cancer[J]. Expert Opin Pharmacother, 2016, 17(12):1683-1691. DOI:10.1080/14656566.2016.1206078.
[35] Schlumberger M, Jarzab B, Cabanillas ME, et al. A phase Ⅱ trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer[J]. Clin Cancer Res, 2016, 22(1):44-53. DOI:10.1158/1078-0432.CCR-15-1127.
[36] Salaun PY, Bodet-Milin C, Frampas E, et al. Toxicity and efficacy of combined radioimmunotherapy and bevacizumab in a mouse model of medullary thyroid carcinoma[J]. Cancer, 2010, 116(4 Suppl):1053S-1058. DOI:10.1002/cncr.24792.
[37] Kraeber-Bodéré F, Salaun PY, Ansquer C, et al. Pretargeted radioimmunotherapy (pRAIT) in medullary thyroid cancer (MTC)[J]. Tumour Biol, 2012, 33(3):601-606. DOI:10.1007/s13277-012-0359-6.
[38]

Vitale G, Lupoli G, Guarrasi R, et al. Interleukin-2 and lanreotide in the treatment of medullary thyroid cancer: in vitro and in vivo studies[J/OL]. J Clin Endocrinol Metab, 2013, 98(10): E1567-E1574[2017-11-20]. https://academic.oup.com/jcem/article/98/10/E1567/2833347. DOI: 10.1210/jc.2013-1443.

[39] He R, Wang H, Zhu GH, et al. Incorporating 131I into a PAMAM(G5.0) dendrimer-conjugate:design of a theranostic nanosensor for medullary thyroid carcinoma[J]. RSC Adv, 2017, 7(26):16181-16188. DOI:10.1039/C7RA00604G.
[40] 陈礼林, 谢丽君, 朱高红, 等.靶向肽结合131I-PAMAM(G5.0)抑制甲状腺髓样癌细胞增殖的研究[J].国际放射医学核医学杂志, 2017, 41(5):307-311. DOI:10.3760/cma.j.issn. 1673-4114. 2017. 05.001.
Chen LL, Xie LJ, Zhu GH, et al. Effects of targeted peptide-conjugated 131I-PAMAM(G5.0)on the inhibition of medullary thyroid carcinoma cells proliferation[J]. Inter J Radiat Med Nucl Med, 2017, 41(5):307-311.  doi: 10.3760/cma.j.issn.1673-4114.2017.05.001
[41] 李娟, 甘生敏, 罗超, 等. AG490抑制甲状腺髓样癌TT细胞增殖并提高其放射敏感性[J].细胞与分子免疫学杂志, 2015, 31(6):753-757. DOI:10.12423/j.cnki.cjcmi.007416.
Li J, Gan SM, Luo C, et al. AG490 inhibits the proliferation of human medullary thyroid carcinoma TT cells and increases their radiosensitivity[J]. J Cell Mol Med, 2015, 31(6):753-757.  doi: 10.12423/j.cnki.cjcmi.007416
[42] Sosonkina N, Starenki D, Park JI. The role of STAT3 in thyroid cancer[J]. Cancers (Basel), 2014, 6(1):526-544. DOI:10.3390/cancers 6010526.
[43]

Karen J, Rodriguez A, Friman T, et al. Effects of the histone deacetylase inhibitor valproic acid on human pericytes in vitro[J/OL]. PLoS One, 2011, 6(9): e24954[2017-11-20]. http: http: //journals. plos. org/plosone/article?id=10. 1371/journal. pone. 0024954. DOI: 10.1371/journal.pone.0024954.

[44] Mannaerts I, Nuytten NR, Rogiers V, et al. Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo[J]. Hepatology, 2010, 51(2):603-614. DOI:10.1002/hep.23334.
[45] Greenblatt DY, Ma CY, Adler JT, et al. Valproic acid activates Notch 1 signaling and induces apoptosis in medullary thyroid cancer cells[J]. Ann Surg, 2008, 247(6):1036-1040. DOI:10.1097/SLA.0b013e3181758d0e.
[46] Adler JT, Hottinger DG, Kunnimalaiyaan M, et al. Inhibition of growth in medullary thyroid cancer cells with histone deacetylase inhibitors and Lithium chloride[J]. J Surg Res, 2010, 159(2):640-644. DOI:10.1016/j.jss.2008.08.004.
[47] 齐研, 贾慧英.丙戊酸盐对甲状腺髓样癌TT细胞的影响[J].诊断学理论与实践, 2015, 14(3):248-251. DOI:10.16150/j.1671-2870.2015.03.013.
Qi Y, Jia HY. Effects of valproic acid on TT human medullary thyroid carcinoma cell line[J]. J Diagn Concepts Pract, 2015, 14(3):248-251.  doi: 10.16150/j.1671-2870.2015.03.013
[48] Li LC, Liu GD, Zhang XJ, et al. Autophagy, a novel target for chemotherapeutic intervention of thyroid cancer[J]. Cancer Chemother Pharmacol, 2014, 73(3):439-449. DOI:10.1007/s00280-013-2363-y.
[49] 曹乐薇.自噬与甲状腺癌[J].中国医师杂志, 2016, 18(6):950-953. DOI:10.3760/cma.j.issn. 1008-1372. 2016.06.049.
Cao LW. Autophagy and thyroid cancer[J]. J Chin Phys, 2016, 18(6):950-953.  doi: 10.3760/cma.j.issn.1008-1372.2016.06.049
[50] Lin CI, Whang EE, Lorch JH, et al. Autophagic activation potentiates the antiproliferative effects of tyrosine kinase inhibitors in medullary thyroid cancer[J]. Surgery, 2012, 152(6):1142-1149. DOI:10.1016/j.surg. 2012.08.016.