[1] Gewirtz DA, Hilliker ML, Wilson EN. Promotion of autophagy as a mechanism for radiation sensitization of breast tumor cells[J]. Radiother Oncol, 2009, 92(3):323-328.
[2] Turesson I, Nyman J, Qvarnström F, et al. A low-dose hypersensitive keratinocyte loss in response to fractionated radiotherapy is associated with growth arrest and apoptosis[J]. Radiother Oncol, 2010, 94(1):90-101.
[3] Vitale I, Galluzzi L, Castedo M, et al. Mitotic catastrophe:a mechanism for avoiding genomic instability[J]. Nat Rev Mol Cell Biol, 2011, 12(6):385-392.  doi: 10.1038/nrm3115
[4] Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs[J]. Nat Rev Cancer, 2011, 11(4):239-253.  doi: 10.1038/nrc3007
[5] Rainey MD, Charlton ME, Stanton RV, et al. Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation[J]. Cancer Res, 2008, 68(18):7466-7474.  doi: 10.1158/0008-5472.CAN-08-0763
[6] Chalmers AJ, Lakshman M, Chan N, et al. Poly(ADP-ribose) polymerase inhibition as a model for synthetic lethality in developing radiation oncology targets[J]. Semin Radiat Oncol, 2010, 20(4):274-281.  doi: 10.1016/j.semradonc.2010.06.001
[7] Goodarzi AA, Jeggo P, Lobrich M. The influence of heterochromatin on DNA double strand break repair:Getting the strong, silent type to relax[J]. DNA Repair(Amst), 2010, 9(12):1273-1282.  doi: 10.1016/j.dnarep.2010.09.013
[8] Toulany M, Kehlbach R, Rodemann HP, et al. Radiocontrast media affect radiation-induced DNA damage repair in vitro and in vivo by affecting Akt signalling[J]. Radiother Oncol, 2010, 94(1):110-116.
[9] Meyn RE, Munshi A, Haymach JV, et al. Receptor signaling as a regulatory mechanism of DNA repair[J]. Radiother Oncol, 2009, 92(3):316-322.
[10] Florczak U, Toulany M, Kehlbach R, et al. 2-Methoxyestradiol-induced radiosensitization is Independent of SOD but depends on inhibition of Akt and DNA-PKcs activities[J]. Radiother Oncol, 2009, 92(3):334-338.
[11] Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer:5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival[J]. Lancet Oncol, 2010, 11(1):21-28.  doi: 10.1016/S1470-2045(09)70311-0
[12] Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck[J]. N Engl J Med, 2006, 354(6):567-578.  doi: 10.1056/NEJMoa053422
[13] Dietz A, Wichmann G. Translational research in head and neck cancer. Biological characteristics and general aspects. HNO, 2011, 59(9):874-884.  doi: 10.1007/s00106-011-2361-5
[14] Van Den Beucken T, Ramaekers CH, Rouschop K, et al. Deficient carbonic anhydrase 9 expression in UPR-impaired cells is associated with reduced survival in an acidic microenvironment[J]. Radiother Oncol, 2009, 92(3):437-442.
[15] Sørensen BS, Horsman MR, Vorum H, et al. Proteins upregulated by mild and severe hypoxia in squamous cell carcinomas in vitro identified by proteomics[J]. Radiother Oncol, 2009, 92(3):443-449.
[16] Mujcic H, Rzymski T, Rouschop KM, et al. Hypoxic activation of the unfolded protein response(UPR) induces expression of the metastasis-associated gene LAMP3[J]. Radiother Oncol, 2009, 92(3):450-459.
[17] Zang J, Li C, Zhao LN, et al. Prognostic value of vascular endothelial growth factor in patients with head and neck cancer:a meta-analysis[J]. Head Neck, 2013, 35(10):1507-1514.
[18] Hui EP, Chan AT, Pezzella F, et al. Coexpression of hypoxia-inducible factors 1α and 2α, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival[J]. Clin Cancer Res, 2002, 8(8):2595-2604.
[19] Jung YS, Vermeer PD, Vermeer DW, et al. CD200:association with cancer stem cell features and response to chemoradiation in head and neck squamous cell carcinoma[J]. Head Neck, 2015, 37(3):327-335.  doi: 10.1002/hed.23608
[20] Nguyen GH, Murph MM, Chang JY. Cancer stem cell radioresistance and enrichment:where frontline radiation therapy May fail in lung and esophageal cancers[J]. Cancers(Basel), 2011, 3(1):1232-1252.
[21] Hsu HS, Huang PI, Chang YL, et al. Cucurbitacin I inhibits tumorigenic ability and enhances radiochemosensitivity in nonsmall cell lung cancer-derived CD133-positive cells[J]. Cancer, 2011, 117(13):2970-2985.  doi: 10.1002/cncr.25869
[22] Lo WL, Yu CC, Chiou GY, et al. MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells[J]. J Pathol, 2011, 223(4):482-495.  doi: 10.1002/path.2826
[23] Andreassen CN, Alsner J. Genetic variants and normal tissue toxicity after radiotherapy:a systematic review[J]. Radiother Oncol, 2009, 92(3):299-309.
[24] Andreassen CN. Searching for genetic determinants of normal tissue radiosensitivity—are we on the right track?[J]. Radiother Oncol, 2010, 97(1):1-8.
[25] West C, Rosenstein BS. Establishment of a radiogenomics consortium[J]. Radiother Oncol, 2010, 94(1):117-118.
[26] Hui AB, Lenarduzzi M, Krushel T, et al. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas[J]. Clin Cancer Res, 2010, 16(4):1129-1139.  doi: 10.1158/1078-0432.CCR-09-2166
[27]

Chen D, Cabay RJ, Jin Y, et al. MicroRNA deregulations in head and neck squamous cell carcinomas[J/OL]. J Oral Maxillofac Res, 2013, 4(1): e2[2014-11-17]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886106.

[28] Nakanishi H, Taccioli C, Palatini J, et al. Loss of miR-125b-1 contributes to head and neck cancer development by dysregulating TACSTD2 and MAPK pathway[J]. Oncogene, 2014, 33(6):702-712.  doi: 10.1038/onc.2013.13