[1] Gomez-Navarro J, Curiel DT, Douglas JT. Gene therapy for cancer[J].Eur J Cancer, 1999, 35(3):867-885.
[2] Weiner DB, Kennedy RC. Genetic vaccines[J]. Sci Am, 1999, 281(1):50-70,.
[3] Narimatsu M, Nagayama Y, Akino K, et al. Therapeutic usefulness of wild-type p53 gene introduction in a p53-null anaplastic thyroid carcinoma cell line[J]. J Clin Endocrinol Metab, 1998, 83(11):3668-3672.
[4] Blagosklonny MV, Giannakokou P, Wojtowics M, et al. Effects of p53-expression adenovirus on the ehemosensitivity and differentiationofanaplasticthyroidcancercells[J]. JClin Endocrinol Metab,1998, 83(8):2516-2522.
[5] Shimura H, Suzuki H, Miyazaki A, et al. Transcriptional activation of the thyroglobulin promoter directing suicide gene expression by thyroid transcription factor-1 in thyroid cancer cells[J]. Cancer Res, 2001, 61(11):3640-3646.
[6] Kitazono M, Chuman Y, Aikou T, et al. Adenovirus HSV-TK construct with thyroid-specific promoter:Enhancement of activity and specificity with histone deacetylase inhibitors and agents modulating the camp pathway[J]. Iht J Cancer, 2002, 99(2):453-459.
[7] Zahng R, De Groot IJ. Gene therapy of established medullary thyroid carcinoma with herpes simplex viral thymidine kinase in a rat tumor model:relationship of bystander effect and antitumor efficacy[J]. Thyroid, 2000, 10(1):313-319.
[8] Zhang R, De Groot IJ. An adenoviral expression functional heterogeneous proteins herpes simplex viral thymidine kinase and human interleukin-2 has enhanced in vivo antitumor activity against medullary thyroid carcinoma[J]. Endocrinol Relat Cancer, 2001, 8(2):315-325.
[9] Yamazaki M, Zhang R, Straus FH, et al. Effective gene therapy for medullary thyroid carcinoma using recombinant adenovirus inducing tumor specific expression of intedeukin-12[J]. Gene Therapy,2002, 9(1):64-74.
[10] Soler MN, Bobe P, Benihoud K, et al. Gene therapy of rat medullary thyroid cancer by naked nitric o. xide synthase Ⅱ DNA injection[J]. J Gene Med, 2000, 2(2):344-352.
[11] Zhang R, De Groot LJ. Genetic immunotherapy of established tumors with adenoviral vectors transducing murine interleukin(mIL-12) subunits in a rat medullary thyroid carcinoma model[J]. Clin Endocrinol(Oxf), 2000, 52(3):687-694.
[12] Zhang R, Straus FH, De Groot LJ. Effective genetic therapy of established medullary thyroid carcinomas with murine interleukin2:dissemination and cytotoxicity studies in a rat tumor model[J].Endocrinology, 1999, 140(7):2152-2158.
[13] Filletti S, Bidart JM, Arturi R, et al. Sodium/Iodide symporter:a key transport system in thyroid cancer cell metabolism[J]. Eur J Endocrinol, 1999, 141(2):443-457.
[14] Venkataraman GM, Yatin M, Mareinek R, et al. Restoration of iodine uptake in dedifferentiated thyroid carcinoma relationship to human Na+/I- symporter gene methylation status[J]. J Clin Endocrinol and Metab, 1999, 84(8):2449-2460.
[15] Haupt K, Siegel F, Lu M, et al. Induction of a cellular and humoral immune response against the tumor associated antigen calcitolin by geneticimmunization[J]. J Endocrinol Investig, 1999, 22(supple):4.
[16] Juweid ME, Hajjar G, Swayne LC, et al. Phase Ⅰ/Ⅱ trial of 131I-MN14F (ab)2 anticarcinoembryonic antigen monoclonal antibody in the treatment of patients with metastatic medullary thyroid carcinoma[J].Cancer, 1999, 85(6):1828-1842.
[17] Simon D, Kohrle J, Reiners C, et al. Redifferentiation therapy with retinoids-a therapeutic option in advanced follicular and papillary thyroid carcinoma[J]. World J Surg, 1998, 22(2):569-574.
[18] Simon D, Kohrle J, Reiners C, et al. Redifferentiation therapy in thyroid cancer-results of a multicenter pilot study[J]. Thyroid, 1998,8(4):1217.
[19] Schmutaler C, Koehrle J. Innovative strategies for the treatment of thyroid cancer[J]. Eur J Endocrinol, 2000, 143(1):15-24.
[20] Signore A, Annovazzi A, Chianelli M, et al. Peptide radio-pharmaceuticals for diagnosis and therapy[J]. Eur J Nucl Med, 2001, 28(5):1555-1556.
[21] Oberg K. Established clinical use of octreotide and lanreotide in oncology[J]. Chemotherapy, 2001, 47(1):47-63.
[22] Weiner RE, Thakur ML. Radilabaled peptides in the diagnosis and therapy of oncological disease[J]. Appl Radiat Isot, 2002, 57(2):749-763.
[23] Kwekkeboom DJ, Krenning EP. Somatostatin receptor imaging[J].Semin Nucl Med, 2002, 32(1):84-91.
[24] Lamberts SWL, de Herder WW, Hofland LJ. Somatostatin analogs in the diagnosis and treatment of cancer[J]. Trends Endocrinol Metab,2002, 13(2):451-502.
[25] Papotti M, Kumar U,Volante M, et al. Immunohistochemical detection of somatostatin types 1-5 in medullary carcinoma of the thyroid[J]. Clin Endocrinol, 2001, 54(2):641-649.
[26] Slooter GD, Mearadji A,Breeman WAP, et al. Somatostatin receptor imaging, therapy and new strategies in patients with neuroendocrine tumors[J]. Br J Surg, 2003, 88(1):31-40.
[27] Boerman OC, Oyen WJG, Corstens FHM. Radio-labeled receptor binding peptides:a new class of radiopharmaceutical[J]. Semin Nucl Med, 2001, 30(1):195-208.
[28] Kwekkeboom DJ, Krenning EP, de Jong M. Peptide receptor imaging and therapy[J]. J Nucl Med, 2002, 41(6):1704-1713.
[29] Bugal JE, Erion JL, Johnson MA, et al. Radiothapeutical efficacy of 153-Sm-CMDTPA-Tyr3-octreotide in tumor-bearing rats[J]. Nucl Med Biol, 2001, 28(1):327-334.
[30] Bohuslavizki KH. Somatostatin receptor imaging:current status and future perspectives[J]. J Nucl Med, 2003, 42(3):1057-1058.