[1] Sanmamed MF, Chen L.  A paradigm shift in cancer immunotherapy: from enhancement to normalization[J]. Cell, 2018, 175(2): 313-326.   doi: 10.1016/j.cell.2018.09.035
[2] Hughes PE, Caenepeel S, Wu LC.  Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer[J]. Trends Immunol, 2016, 37(7): 462-476.   doi: 10.1016/j.it.2016.04.010
[3] Chiou VL, Burotto M.  Pseudoprogression and immune-related response in solid tumors[J]. J Clin Oncol, 2015, 33(31): 3541-3543.   doi: 10.1200/JCO.2015.61.6870
[4] Champiat S, Dercle L, Ammari S, et al.  Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1[J]. Clin Cancer Res, 2017, 23(8): 1920-1928.   doi: 10.1158/1078-0432.CCR-16-1741
[5] Wolchok JD, Hoos A, O'Day S, et al.  Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria[J]. Clin Cancer Res, 2009, 15(23): 7412-7420.   doi: 10.1158/1078-0432.CCR-09-1624
[6] Hodi FS, Hwu WJ, Kefford R, et al.  Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab[J]. J Clin Oncol, 2016, 34(13): 1510-1517.   doi: 10.1200/JCO.2015.64.0391
[7] Kim HK, Heo MH, Lee HS, et al.  Comparison of RECIST to immune-related response criteria in patients with non-small cell lung cancer treated with immune-checkpoint inhibitors[J]. Cancer Chemother Pharmacol, 2017, 80(3): 591-598.   doi: 10.1007/s00280-017-3396-4
[8] Nishino M, Giobbie-Hurder A, Gargano M, et al.  Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements[J]. Clin Cancer Res, 2013, 19(14): 3936-3943.   doi: 10.1158/1078-0432.CCR-13-0895
[9] Bohnsack O, Hoos A, Ludajic K.  Adaptation and modification of the immune related response criteria (IRRC): irRECIST[J]. J Clin Oncol, 2014, 32(15 Suppl): e22121-.   doi: 10.1200/JCO.2014.32.15_suppl.e22121
[10] Jhawar SR, Silk AW, Goyal S.  Pseudoprogression of a spinal metastasis after stereotactic ablative body radiation therapy and immune checkpoint therapy[J]. Pract Radiat Oncol, 2017, 7(2): 109-112.   doi: 10.1016/j.prro.2016.11.006
[11] Seymour L, Bogaerts J, Perrone A, et al.  iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics[J]. Lancet Oncol, 2017, 18(3): e143-e152.   doi: 10.1016/s1470-2045(17)30074-8
[12] Eisenhauer EA, Therasse P, Bogaerts J, et al.  New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247.   doi: 10.1016/j.ejca.2008.10.026
[13] Benjamin RS, Choi H, Macapinlac HA, et al.  We should desist using RECIST, at least in GIST[J]. J Clin Oncol, 2007, 25(13): 1760-1764.   doi: 10.1200/JCO.2006.07.3411
[14] Jochelson M, Mauch P, Balikian J, et al.  The significance of the residual mediastinal mass in treated Hodgkin's disease[J]. J Clin Oncol, 1985, 3(5): 637-640.   doi: 10.1200/JCO.1985.3.5.637
[15] Young H, Baum R, Cremerius U, et al.  Measurement of clinical and subclinical tumour response using 18F-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European organization for research and treatment of cancer (EORTC) PET study group[J]. Eur J Cancer, 1999, 35(13): 1773-1782.   doi: 10.1016/s0959-8049(99)00229-4
[16] Shang JJ, Ling XY, Zhang LY, et al.  Comparison of RECIST, EORTC criteria and PERCIST for evaluation of early response to chemotherapy in patients with non-small-cell lung cancer[J]. Eur J Nucl Med Mol Imaging, 2016, 43(11): 1945-1953.   doi: 10.1007/s00259-016-3420-7
[17] Wahl RL, Jacene H, Kasamon Y, et al.  From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors[J]. J Nucl Med, 2009, 50(Suppl 1): S122-150.   doi: 10.2967/jnumed.108.057307
[18] Sachpekidis C, Larribere L, Pan L, et al.  Predictive value of early 18F-FDG PET/CT studies for treatment response evaluation to ipilimumab in metastatic melanoma: preliminary results of an ongoing study[J]. Eur J Nucl Med Mol Imaging, 2015, 42(3): 386-396.   doi: 10.1007/s00259-014-2944-y
[19] Tan AC, Emmett L, Lo S, et al.  FDG-PET response and outcome from anti-PD-1 therapy in metastatic melanoma[J]. Ann Oncol, 2018, 29(10): 2115-2120.   doi: 10.1093/annonc/mdy330
[20] Cho SY, Lipson EJ, Im HJ, et al.  Prediction of response to immune checkpoint inhibitor therapy using early-time-point 18F-FDG PET/CT imaging in patients with advanced melanoma[J]. J Nucl Med, 2017, 58(9): 1421-1428.   doi: 10.2967/jnumed.116.188839
[21] Kong BY, Menzies AM, Saunders CA, et al.  Residual FDG-PET metabolic activity in metastatic melanoma patients with prolonged response to anti-PD-1 therapy[J]. Pigment Cell Melanoma Res, 2016, 29(5): 572-577.   doi: 10.1111/pcmr.12503
[22]

Goldfarb L, Duchemann B, Chouahnia K, et al. Monitoring anti-PD-1-based immunotherapy in non-small cell lung cancer with FDG PET: introduction of iPERCIST[J/OL]. EJNMMI Res, 2019, 9(1): 8[2019-12-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890907. DOI: 10.1186/s13550-019-0473-1.

[23] Anwar H, Sachpekidis C, Winkler J, et al.  Absolute number of new lesions on 18F-FDG PET/CT is more predictive of clinical response than SUV changes in metastatic melanoma patients receiving ipilimumab[J]. Eur J Nucl Med Mol Imaging, 2018, 45(3): 376-383.   doi: 10.1007/s00259-017-3870-6
[24] Ito K, Teng R, Schöder H, et al.  18F-FDG PET/CT for monitoring of ipilimumab therapy in patients with metastatic melanoma[J]. J Nucl Med, 2019, 60(3): 335-341.   doi: 10.2967/jnumed.118.213652
[25] Cheson BD, Ansell S, Schwartz L, et al.  Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy[J]. Blood, 2016, 128(21): 2489-2496.   doi: 10.1182/blood-2016-05-718528
[26] Dercle L, Seban RD, Lazarovici J, et al.  18F-FDG PET and CT scans detect new imaging patterns of response and progression in patients with Hodgkin lymphoma treated by anti-programmed death 1 immune checkpoint inhibitor[J]. J Nucl Med, 2018, 59(1): 15-24.   doi: 10.2967/jnumed.117.193011
[27] Castello A, Grizzi F, Qehajaj D, et al.  18F-FDG PET/CT for response assessment in Hodgkin lymphoma undergoing immunotherapy with checkpoint inhibitors[J]. Leuk Lymphoma, 2019, 60(2): 367-375.   doi: 10.1080/10428194.2018.1488254
[28] Meignan M, Gallamini A, Meignan M, et al.  Report on the first international workshop on interim-PET-scan in lymphoma[J]. Leuk Lymphoma, 2009, 50(8): 1257-1260.   doi: 10.1080/10428190903040048
[29] Chen RH, Zhou X, Liu JJ, et al.  Relationship between the expression of PD-1/PD-L1 and 18F-FDG uptake in bladder cancer[J]. Eur J Nucl Med Mol Imaging, 2019, 46(4): 848-854.   doi: 10.1007/s00259-018-4208-8
[30] Noman MZ, Desantis G, Janji B, et al.  PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation[J]. J Exp Med, 2014, 211(5): 781-790.   doi: 10.1084/jem.20131916
[31] Natarajan A, Mayer AT, Xu LY, et al.  Novel radiotracer for immunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes[J]. Bioconjug Chem, 2015, 26(10): 2062-2069.   doi: 10.1021/acs.bioconjchem.5b00318
[32] Cole EL, Kim J, Donnelly DJ, et al.  Radiosynthesis and preclinical PET evaluation of 89Zr-nivolumab (BMS-936558) in healthy non-human primates[J]. Bioorg Med Chem, 2017, 25(20): 5407-5414.   doi: 10.1016/j.bmc.2017.07.066
[33]

Natarajan A, Patel CB, Habte F, et al. Dosimetry prediction for clinical translation of 64Cu-pembrolizumab immunoPET targeting human PD-1 expression[J/OL]. Sci Rep, 2018, 8(1): 633[2019-12-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766550. DOI: 10.1038/s41598-017-19123-x.

[34] Bensch F, van der Veen EL, Lub-de Hooge MN, et al.  89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer[J]. Nat Med, 2018, 24(12): 1852-1858.   doi: 10.1038/s41591-018-0255-8
[35] Maute RL, Gordon SR, Mayer AT, et al.  Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging[J]. Proc Natl Acad Sci U S A, 2015, 112(47): E6506-E6514.   doi: 10.1073/pnas.1519623112
[36] Moroz A, Lee CY, Wang YH, et al.  A preclinical assessment of 89Zr-atezolizumab identifies a requirement for carrier added formulations not observed with 89Zr-C4[J]. Bioconjug Chem, 2018, 29(10): 3476-3482.   doi: 10.1021/acs.bioconjchem.8b00632
[37] Natarajan A, Patel CB, Ramakrishnan S, et al.  A novel engineered small protein for positron emission tomography imaging of human programmed death ligand-1: validation in mouse models and human cancer tissues[J]. Clin Cancer Res, 2019, 25(6): 1774-1785.   doi: 10.1158/1078-0432.CCR-18-1871
[38] Xing Y, Chand G, Liu CC, et al.  Early phase Ⅰ study of a Tc-labeled anti-programmed death ligand-1 (PD-L1) single-domain antibody in SPECT/CT assessment of PD-L1 expression in non-small cell lung cancer[J]. J Nucl Med, 2019, 60(9): 1213-1220.   doi: 10.2967/jnumed.118.224170
[39]

Niemeijer AN, Leung D, Huisman MC, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer[J/OL]. Nat Commun, 2018, 9(1): 4664[2019-12-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220188. DOI: 10.1038/s41467-018-07131-y.

[40] Donnelly DJ, Smith RA, Morin P, et al.  Synthesis and biologic evaluation of a novel 18F-labeled adnectin as a PET radioligand for imaging PD-L1 expression[J]. J Nucl Med, 2018, 59(3): 529-535.   doi: 10.2967/jnumed.117.199596
[41] Gniadek TJ, Li QK, Tully E, et al.  Heterogeneous expression of PD-L1 in pulmonary squamous cell carcinoma and adenocarcinoma: implications for assessment by small biopsy[J]. Mod Pathol, 2017, 30(4): 530-538.   doi: 10.1038/modpathol.2016.213
[42] 邢岩, 赵晋华.  靶向免疫检查点PD-1/PD-L1的肿瘤分子影像学研究进展[J]. 国际放射医学核医学杂志, 2019, 43(4): 356-360.   doi: 10.3760/cma.j.issn.1673-4114.2019.04.010
Xing Y, Zhao JH.  Advances of molecular imaging of immune checkpoint targeting PD-1/PD-L1 in tumors[J]. Int J Radiat Med Nucl Med, 2019, 43(4): 356-360.   doi: 10.3760/cma.j.issn.1673-4114.2019.04.010