[1] Whitnall MH, Villa V, Seed TM, et al. Molecular specificity of 5-androstenediol as a systemic radioprotectant in mice[J]. Immunoph-armacol Immunotoxicol, 2005, 27(1):15-32. DOI:10.1081/IPH-200051289.
[2] Whitnall MH, Elliott TB, Harding RA, et al. Androstenediol stimulates myelopoiesis and enhances resistance to infection in gamma-irradiated mice[J]. Int J Immunopharmacol, 2000, 22(1):1-14. DOI:10.1016/S0192-0561(99)00059-4.
[3] Kim JS, Jang WS, Lee S, et al. A study of the effect of sequential injection of 5-androstenediol on irradiation-induced myelosuppression in mice[J]. Arch Pharm Res, 2015, 38(6):1213-1222. DOI:10.1007/s12272-014-0483-5.
[4] Stickney DR, Dowding C, Garsd A, et al. 5-androstenediol stimulates multilineage hematopoiesis in rhesus monkeys with radiation-induced myelosuppression[J]. Int Immunopharmacol, 2006, 6(11):1706-1713. DOI:10.1016/j.intimp.2006.07.005.
[5] Mark HW, Catherine L. W, Luann M, et al. Radioprotective efficacy and acute toxicity of 5-androstenediol after subcutaneous or oral administration in mice[J]. Immunopharmacol Immunotoxicol, 2002, 24(4):595-626. DOI:10.1081/IPH-120016038.
[6] Stickney DR, Dowding C, Authier S, et al. 5-androstenediol improves survival in clinically unsupported rhesus monkeys with radiation-induced myelosuppression[J]. Int Immunopharmacol, 2007, 7(4):500-505. DOI:10.1016/j.intimp.2006.12.005.
[7] Singh VK, Shafran RL, Inal CE, et al. Effects of whole-body gamma irradiation and 5-androstenediol administration on serum G-CSF[J]. Immunopharmacol Immunotoxicol, 2005, 27(4):521-534. DOI:10.1080/08923970500416707.
[8] Grace MB, Singh VK, Rhee JG, et al. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis[J]. J Radiat Res, 2012, 53(6):840-853. DOI:10.1093/jrr/rrs060.
[9] Stickney DR, Groothuis JR, Ahlem CA, et al. Preliminary clinical findings on NEUMUNE as a potential treatment for acute radiation syndrome[J]. J Radiol Prot, 2010, 30(4):687-698. DOI:10.1088/0952-4746/30/4/004.
[10] Nguyen HQ, Chupin VV, Prokhorov DI, et al. Creation and study of triterpenoid nanoparticles and radioprotective substance genistein[J]. Dokl Biochem Biophys, 2015, 464(1):338-340. DOI:10.1134/S160767291505018X.
[11] Day RM, Barshishat-Kupper M, Mog SR, et al. Genistein protects against biomarkers of delayed lung sequelae in mice surviving High-Dose total body irradiation[J]. Radiat Res, 2008, 49(4):361-372. DOI:10.1269/jrr.07121.
[12] Singh VK, Grace MB, Parekh VI, et al. Effects of genistein administration on cytokine induction in whole-body gamma irradiated mice[J]. Int Immunopharmacol, 2009, 9(12):1401-1410. DOI:10.1016/j.intimp.2009.08.012.
[13] Abernathy LM, Fountain MD, Rothstein SE, et al. Soy isoflavones promote radioprotection of normal lung tissue by inhibition of Radiation-Induced-Activation-of Macrophages-and-Neutrophils[J]. J Thorac Oncol, 2015, 10(12):1703-1712. DOI:10.1097/JTO. 0000000000000677.
[14] Davis TA, Clarke TK, Mog SR, et al. Subcutaneous administration of genistein prior to lethal irradiation supports multilineage, hematopoietic progenitor cell recovery and survival[J]. Int J Radiat Biol, 2009, 83(3):141-151. DOI:10.1080/09553000601132642.
[15] Yong Z, Man-Tian M. Genistein stimulates hematopoiesis and increases survival in irradiated mice[J]. Radiat Res, 2005, 46(4):425-33. DOI:10.1517/3794923930876.
[16] Dominello MM, Fountain MD, Rothstein SE, et al. Radiation injury to cardiac arteries and myocardium is reduced by soy isoflavones[J]. J Radiat Oncol, 2017, 6(3):307-315. DOI:10.1007/s13566-017-0301-z.
[17] Ha CT, Li XH, Fu D, et al. Genistein nanoparticles protect mouse hematopoietic system and prevent proinflammatory factors after gamma irradiation[J]. Radiat Res, 2013, 180(3):316-325. DOI:10. 1667/RR3326.1.
[18] Dumont F, Le Roux A, Bischoff P. Radiation countermeasure agents:an update[J]. Expert Opin Ther Pat, 2010, 20(1):73-101. DOI:10.1517/13543770903490429.
[19] Zenk JL. New therapy for the prevention and prophylactic treatment of acute radiation syndrome[J]. Expert Opin Investig Drugs, 2007, 16(6):767-770. DOI:10.1517/13543784.16.6.767.
[20] Shi T, Li LQ, Zhou GC, et al. Toll-like receptor 5 agonist CBLB502 induces radioprotective effects in vitro[J]. Acta Biochim Biophys Sin (Shanghai), 2017, 49(6):487-495. DOI:10.1093/abbs/gmx034.
[21] Burdelya LG, Krivokrysenko VI, Tallant TC, et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and Primate models[J]. Science, 2008, 320(5873):226-230. DOI:10. 1126/science.1154986.
[22] Toshkov IA, Gleiberman AS, Mett VL, et al. Mitigation of Radiation-Induced epithelial damage by the TLR5 agonist entolimod in a mouse model of fractionated head and neck irradiation[J]. Radiat Res, 2017, 187(5):570-580. DOI:10.1667/RR14514.1.
[23] Krivokrysenko VI, Shakhov AN, Singh VK, et al. Identification of granulocyte colony-stimulating factor and interleukin-6 as candidate biomarkers of CBLB502 efficacy as a medical radiation counter-measure[J]. J Pharmacol Exp Ther, 2012, 343(2):497-508. DOI:10.1124/jpet.112.196071.
[24] Xu Y, Dong H, Ge C, et al. CBLB502 administration protects gut mucosal tissue in ulcerative colitis by inhibiting inflammation[J]. Ann Transl Med, 2016, 4(16):301. DOI:10.21037/atm.2016.08.25.
[25] Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy[J]. Cytokine Growth Factor Rev, 2002, 13(2):155-168. DOI:10.1016/S1359-6101(01)00032-6.
[26] Guo N, Wang WQ, Gong XJ, et al. Study of recombinant human interleukin-12 for treatment of complications after radiotherapy for tumor patients[J]. World J Clin Oncol, 2017, 8(2):158-167. DOI:10.5306/wjco.v8.i2.158.
[27] Chen T, Burke KA, Zhan Y, et al. IL-12 facilitates both the recovery of endogenous hematopoiesis and the engraftment of stem cells after ionizing radiation[J]. Exp Hematol, 2007, 35(2):203-213. DOI:10.1016/j.exphem.2006.10.002.
[28]

Basile LA, Gallaher TK, Shibata D, et al. Multilineage hematopoietic recovery with concomitant antitumor effects using low dose Interleukin-12 in myelosuppressed tumor-bearing mice[J/OL]. J Transl Med, 2008, 6:26[2017-06-02]. https://www.ncbi.nlm.nih.gov/pubmed/?term=PMC2424034.DOI:10.1186/1479-5876-6-26.

[29] Gluzman-Poltorak Z, Vainstein V, Basile LA. Recombinant interleukin-12, but not granulocyte-colony stimulating factor, improves survival in lethally irradiated nonhuman primates in the absence of supportive care:evidence for the development of a frontline radiation medical countermeasure[J]. Am J Hematol, 2014, 89(9):868-873. DOI:10.1002/ajh.23770.
[30] Gluzman-Poltorak Z, Vainstein V, Basile LA. Association of hematological nadirs and survival in a nonhuman Primate model of hematopoietic syndrome of acute radiation syndrome[J]. Radiat Res, 2015, 184(2):226-230. DOI:10.1667/RR13962.1.
[31]

Suman S, Maniar M, Fornace AJ Jr, et al. Administration of ON 01210.Na after exposure to ionizing radiation protects bone marrow cells by attenuating DNA damage response[J/OL]. Radiat Oncol, 2012, 7:6[2017-06-02]. http://dx.doi.org/10.1186/1748-717X-7-6.DOI:10.1186/1748-717X-7-6.

[32] Suman S, Datta K, Doiron K, et al. Radioprotective effects of ON 01210. Na upon oral administration[J]. J Radiat Res, 2012, 53(3):368-376. DOI:10.1269/jrr.11191.
[33] Zhou N, Feng T, Shen X, et al. Synthesis, characterization, and radioprotective activity of α, β-unsaturated aryl sulfone analogs and their Tempol conjugates[J]. Med Chem Comm, 2017, 8(5):1063-1068. DOI:10.1039/c7md00017k.
[34] Ghosh SP, Kulkarni S, Perkins MW, et al. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD (R) in mice[J]. J Radiat Res, 2012, 53(4):526-536. DOI:10.1093/jrr/rrs001.
[35] Zhang Y, Zhang XW, Rabbani ZN, et al. Oxidative stress mediates radiation lung injury by inducing apoptosis[J]. Int J Radiat Oncol Biol Phys, 2012, 83(2):740-748. DOI:10.1016/j.ijrobp.2011. 08. 005.
[36] Macvittie TJ, Gibbs A, Farese AM, et al. AEOL 10150 mitigates Radiation-Induced lung injury in the nonhuman Primate:morbidity and mortality are administration Schedule-Dependent[J]. Radiat Res, 2017, 187(3):298-318. DOI:10.1667/RR4413.1.
[37] Murigi FN, Mohindra P, Hung C, et al. Dose optimization study of AEOL 10150 as a mitigator of Radiation-Induced lung injury in CBA/J mice[J]. Radiat Res, 2015, 184(4):422-432. DOI:10.1667/RR14110.1.
[38]

Kiang JG, Zhai M, Liao PJ, et al. Thrombopoietin receptor agonist mitigates hematopoietic radiation syndrome and improves survival after Whole-Body ionizing irradiation followed by wound trauma[J/OL]. Mediators Inflamm, 2017:9[2017-06-02]. http://dx.doi.org/10.1155/2017/7582079.DOI:10.1155/2017/7582079.

[39] Satyamitra M, Lombardini E, Graves IJ, et al. A TPO receptor agonist, ALXN4100TPO, mitigates Radiation-Induced lethality and stimulates hematopoiesis in CD2F1 mice[J]. Radiat Res, 2011, 175(6):746-758. DOI:10.1667/RR2462.1.
[40] Satyamitra M, Lombardini E, Peng T, et al. Preliminary nonclinical toxicity, pharmacokinetics, and pharmacodynamics of ALXN4100 TPO, a thrombopoietin receptor agonist, in CD2F1 mice[J]. Int J Toxicol, 2013, 32(2):100-112. DOI:10.1177/1091581813482336.
[41] Cary LH, Ngudiankama BF, Salber RE, et al. Efficacy of radiation countermeasures depends on radiation quality[J]. Radiat Res, 2012, 177(5):663-675. DOI:10.1667/RR2783.1.
[42] Cai Y, Wang W, Liang H, et al. Keratinocyte growth factor pretreatment prevents radiation-induced intestinal damage in a mouse model[J]. Scand J Gastroenterol, 2013, 48(4):419-426. DOI:10.3109/00365521.2013.772227.
[43] Finch PW, Mark Cross LJ, McAuley DF, et al. Palifermin for the protection and regeneration of epithelial tissues following injury:new findings in basic research and pre-clinical models[J]. J Cell Mol Med, 2013, 17(9):1065-1087. DOI:10.1111/jcmm.12091.
[44] Lucchese A, Matarese G, Ghislanzoni LH, et al. Efficacy and effects of palifermin for the treatment of oral mucositis in patients affected by acute lymphoblastic leukemia[J]. Leuk Lymphoma, 2016, 57(4):820-827. DOI:10.3109/10428194.2015.1081192.
[45] Stiff PJ, Leinonen M, Kullenberg T, et al. Long-Term safety outcomes in patients with hematological malignancies undergoing autologous hematopoietic stem cell transplantation treated with palifermin to prevent oral mucositis[J]. Biol Blood Marrow Transplant, 2016, 22(1):164-169. DOI:10.1016/j.bbmt.2015.08.018.
[46] Vadhan-Raj S, Goldberg JD, Perales MA, et al. Clinical applications of palifermin:amelioration of oral mucositis and other potential indications[J]. J Cell Mol Med, 2013, 17(11):1371-1384. DOI:10. 1111/jcmm.12169.
[47] Lazo JS, Sharlow ER, Epperly MW, et al. Pharmacologic profiling of phosphoinositide 3-kinase inhibitors as mitigators of ionizing radiation-induced cell death[J]. J Pharmacol Exp Ther, 2013, 347(3):669-680. DOI:10.1124/jpet.113.208421.
[48] Casey-Sawicki K, Zhang M, Kim S, et al. A basic fibroblast growth factor analog for protection and mitigation against acute radiation syndromes[J]. Health Phys, 2014, 106(6):704-712. DOI:10.1097/HP.0000000000000095.
[49] Saito K, Funayama T, Yokota Y, et al. Histone deacetylase inhibitors sensitize murine B16F10 melanoma cells to Carbon ion irradiation by inducing G1 phase arrest[J]. Biol Pharm Bull, 2017, 40(6):844-851. DOI:10.1248/bpb.b16-01025.
[50] Zhou Y, Niu J, Li S, et al. Radioprotective effects of valproic acid, a histone deacetylase inhibitor, in the rat brain[J]. Biomed Rep, 2015, 3(1):63-69. DOI:10.3892/br.2014.367.
[51] Miller AC, Cohen S, Stewart M, et al. Radioprotection by the histone deacetylase inhibitor phenylbutyrate[J]. Radiat Environ Biophys, 2011, 50(4):585-596. DOI:10.1007/s00411-011-0384-7.
[52]

Lu X, Nurmemet D, Bolduc DL, et al. Radioprotective effects of oral 17-dimethylaminoethylamino-17-demethoxygeldanamycin in mice:bone marrow and small intestine[J/OL]. Cell Biosci, 2013, 3(1):36[2017-06-02]. http://dx.doi.org/10.1186/2045-3701-3-36.DOI:10.1186/2045-3701-3-36.

[53]

Kiang JG, Zhai M, Liao PJ, et al. Pegylated G-CSF inhibits blood cell depletion, increases platelets, blocks splenomegaly, and improves survival after whole-body ionizing irradiation but not after irradiation combined with burn[J/OL]. Oxid Med Cell Longev, 2014:481392[2017-06-02]. https://www.ncbi.nlm.nih.gov/pubmed/?term=PMC3964894.DOI:10.1155/2014/481392.