[1] Gorin NC, Fliedner TM, Gourmelon P, et al. Consensus conference on European preparedness for haematological and other medical management of mass radiation accidents. Ann Hematol, 2006, 85(10): 671-679.  doi: 10.1007/s00277-006-0153-x
[2]

Fliedner TM, Friesecke I, Beyrer K. Medical management of radiation accident: manual on the acute radiation syndrome. Oxford: British Institute of Radiology, 2001: 1-66.

[3] Becciolini A, Giannardi G, Cionini L, et al. Plasma amylase activity as a biochemical indicator of radiation injury to salivary glands. Acta Radiol Oncol, 1984, 23(1): 9-14.  doi: 10.3109/02841868409135978
[4] Leslie MD, Dische S. Changes in serum and salivary amylase during radiotherapy for head and neck cancer: a comparison of conventionally fractionated radiotherapy with CHART. Radiother Oncol, 1992, 24(1): 27-31.  doi: 10.1016/0167-8140(92)90350-4
[5] Blakely WF, Ossetrova NI, Manglapus GL, et al. Amylase and blood cell-count hematological radiation-injury biomarkers in a rhesus monkey radiation model-use of multiparameter and integrated biological dosimetry. Radiat Measur, 2007, 42(6-7): 1164-1170.  doi: 10.1016/j.radmeas.2007.05.013
[6] Hennequin C, Cosset JM, Cailleux PE, et al. Blood amylase: a biological marker in irradiation accidents? Preliminary results obtained at the Gustave-Roussy Institut (GRI) and a literature review. Bull Cancer, 1989, 76(6): 617-624.
[7] Lyman SD, James L, Vanden Bos T, et al. Molecular of a ligand for the Flt3/flk-2 tyrosine kinase receptor: a proliferative facter for primitive hematopoietic cells. Cell, 1993, 75(6): 1157-1167.  doi: 10.1016/0092-8674(93)90325-K
[8] Bertho JM, Demarquay C, Frick J, et al. Level of Flt3-ligand in plasma: a possible new bio-indicator for radiation-induced aplasia. Int J Radiat Biol, 2001, 77(6): 703-712.  doi: 10.1080/09553000110043711
[9] Huchet A, Belkacémi Y, Frick J, et al. Plasma Flt-3 ligand concentration correlated with radiation-induced bone marrow damage during local fractionated radiotherapy. Int J Radiat Oncol Biol Phys, 2003, 57(2): 508-515.  doi: 10.1016/S0360-3016(03)00584-4
[10] Lutgens LC, Deutz NE, Gueulette J, et al. Citrulline: a physiologic marker enabling quantitation and monitoring of epithelial radiation-induced small bowel damage. Int J Radiat Oncol Biol Phys, 2003, 57(4): 1067-1074.  doi: 10.1016/S0360-3016(03)00781-8
[11] Lutgens L, Lambin P. Biomarkers for radiation-induced small bowel epithelial damage: an emerging role for plasma Citrulline. World J Gastroenterol, 2007, 13(22): 3033-3042.  doi: 10.3748/wjg.v13.i22.3033
[12] Lutgens LC, Blijlevens NM, Deutz NE, et al. Monitoring myeloablative therapy-induced small bowel toxicity by serum citrulline concentra-tion: a comparison with sugar permeability tests. Cancer, 2005, 103(1): 191-199.  doi: 10.1002/cncr.20733
[13] Gudkov AV, Komarova EA. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer, 2003, 3(2): 117-129.  doi: 10.1038/nrc992
[14] Cavalcanti MB, de Jesus Amaral A, de Salazar E Fernandes T, et al. p53 protein expression levels as bioindicator of individual exposure to ionizing radiation by flow cytometry. Mol Cell Biochem, 2008, 308(1-2): 127-131.  doi: 10.1007/s11010-007-9620-5
[15] Kuo LJ, Yang LX. Gamma-H2AX-a novel biomarker for DNA double-strand breaks. In Vivo, 2008, 22(3): 305-309.
[16] Redon CE, Dickey JS, Bonner WM, et al. Gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res, 2009, 43(8): 1171-1178.  doi: 10.1016/j.asr.2008.10.011
[17] Marchetti F, Coleman MA, Jones IM, et al. Candidate protein biodosimeters of human exposure to ionizing radiation. Int J Radiat Biol, 2006, 82(9): 605-639.  doi: 10.1080/09553000600930103
[18] Donnadieu-Claraz M, Benderitter M, Joubert C, et al. Biochemical indicators of whole-body gamma-radiation effects in the pig. Int J Radiat Biol, 1999, 75(2): 165-174.  doi: 10.1080/095530099140618
[19] Wedlake L, McGough C, Hackett C, et al. Can biological markers act as non-invasive, sensitive indicators of radiation-induced effects in the gastrointestinal mucosa?. Aliment Pharmacol Ther, 2008, 27(10): 980-987.  doi: 10.1111/j.1365-2036.2008.03663.x
[20] Roy L, Bertho JM, Souidi M, et al. Biochemical approach to prediction of multiple organ dysfunction syndrome. BJR Suppl, 2005, 27: 146-151.
[21] Bertho JM, Roy L, Souidi M, et al. New biological indicators to evaluate and monitor radiation-induced damage: an accident case report. Radiat Res, 2008, 169(5): 543-550.  doi: 10.1667/RR1259.1
[22] Bertho JM, Roy L, Souidi M, et al. Initial evaluation and follow-up of acute radiation syndrome in two patients from the Dakar accident. Biomarkers, 2009, 14(2): 94-102.  doi: 10.1080/13547500902773904
[23] Nolan JP, Mandy F. Multiplexed and microparticle-based analyses: quantitative tools for the large-scale analysis of biological systems. Cytometry A, 2006, 69(5): 318-325.
[24] Desai N, Wu H, George K, et al. Simultaneous measurement of multiple radiation-induced protein expression profiles using the Luminex(TM) system. Adv Space Res, 2004, 34(6): 1362-1367.  doi: 10.1016/j.asr.2004.01.011