[1] Wilson IK, Chatterjee S, Wolf W. Synthesis of 3'-fluoro-3'-deoxy-thymidine and studies of its 18F-radiolabeling, as a tracer for the noninvasive monitoring of the biodistribution of drugs against AIDS. J Fluorine Chem ,1991, 55(3): 283-289.
[2] Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med,1998, 4(11): 1334-1336.
[3] Turcotte E, Wiens LW, Grierson JR, et al. Toxicology evaluation of radiotracer doses of 3'-deoxy-3'-[18F]fluorothymidine (18F-FLT) for human PET imaging: Laboratory analysis of serial blood samples and comparison to previously investigated therapeutic FLT doses. BMC Nucl Med , 2007, 7 : 3.
[4] Spence AM, Muzi M, Link JM, et al. NCI-sponsored trial for the evaluation of safety and preliminary efficacy of FLT as a marker of proliferation in patients with recurrent gliomas: safety studies. Mol Imaging Biol, 2008, 10(5): 271-280.
[5] Vesselle H, Grierson J, Peterson LM, et al. 18F-Fluorothymidine radiation dosimetry in human PET imaging studies. J Nucl Med, 2003, 44(9): 1482-1488.
[6] Al-Saeedi F, Welch AE, Smith TA. [methyl-3H]Choline incorpora-tion into MCF7 tumour cells: correlation with proliferation. Eur J Nucl Med Mol Imaging , 2005, 32(6): 660-667.
[7] Breeuwsma AJ, Pruim J, Jongen MM, et al. In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging , 2005, 32(6): 668-673.
[8] Wells P, West C, Jones T, et al. Measuring tumor pharmacodynamic response using PET proliferation probes: the case for 2-[(11)C]-thymidine. Biochim Biophys Acta , 2004,1705(2): 91-102.
[9] Mier W, Haberkorn U, Eisenhut M. [18F]FLT; portrait of a prolifera-tion marker. Eur J Nucl Med Mol Imaging, 2002, 29(2):165-169.
[10] Seitz U, Wagner M, Neumaier B, et al. Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3'-[(18)F]fluoro-3'-deoxythymidine ([18F]FLT)in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging, 2002, 29(9):1174-1181.
[11] Rasey JS,Grierson JR,Wiens LW,et al.Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carci-noma cells. J Nucl Med, 2002, 43(9): 1210-1217..
[12] Muzi M, Mankoff DA, Grierson JR, et al. Kinetic modeling of 3'-deoxy-3'-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med, 2005, 46(2): 371-380.
[13] Schiepers C, Chen W, Dahlbom M, et al. 18F-fluorothymidine kinet-ics of malignant brain tumors. Eur J Nucl Med Mol Imaging, 2007, 34(7): 1003-1011.
[14] Muzi M, Vesselle H, Grierson JR, et al. Kinetic analysis of 3'-deoxy-3'-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med, 2005, 46(2): 274-282.
[15] de Langen AJ, Klabbers B, Lubberink M, et al. Reproducibility of quantitative 18F-3'-deoxy-3'-fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging, 2009, 36(3): 389-395.
[16] Plotnik DA, McLaughlin LJ, Chan J, et al. The role of nucleoside/nucleotide transport and metabolism in the uptake and retention of 3'-fluoro-3'-deoxythymidine in human B-lymphoblast cells. Nucl Med Biol, 2011,38(7): 979-986.
[17] Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab, 1983, 3(1): 1-7.
[18] Menda Y, Boles Ponto LL, Dornfeld KJ, et al. Kinetic analysis of 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) in head and neck cancer patients before and early after initiation of chemoradiation therapy. J Nucl Med, 2009, 50(7): 1028-1035.
[19] Barthel H, Perumal M, Latigo J, et al. The uptake of 3'-deoxy-3'-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging, 2005, 32(3): 257-263.
[20] Barthel H, Cleij MC, Collingridge DR, et al. 3'-deoxy-3'-[18F]fluo-rothymidine as a new marker for monitoring tumor response to anti-proliferative therapy in vivo with positron emission tomography. Cancer Res , 2003, 63(13): 3791-3798.
[21] Leyton J, Latigo JR, Perumal M, et al. Early detection of tumor response to chemotherapy by 3'-deoxy-3'-[18F]fluorothymidine posi-tron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res, 2005, 65(10): 4202-4210.
[22] Jensen MM, Erichsen KD, Bjürkling F, et al. Early detection of res-ponse to experimental chemotherapeutic Top216 with [18F]FLT and [18F]FDG PET in human ovary cancer xenografts in mice. PLoS One, 2010, 5(9): e12965.
[23] Leyton J, Alao JP, Da Costa M, et al. In vivo biological activity of the histone deacetylase inhibitor LAQ824 is detectable with 3'-deoxy-3'-[18F]fluorothymidine positron emission tomography. Cancer Res ,2006, 66(15): 7621-7629.
[24] Munch-Petersen B, Cloos L, Jensen HK, et al. Human thymidine kinase 1. Regulation in normal and malignant cells. Adv Enzyme Regul, 1995, 35: 69-89.
[25] van Waarde A, Cobben DC, Suurmeijer AJ, et al. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med, 2004, 45(4): 695-700.
[26] Toyohara J, Waki A, Takamatsu S, et al. Basis of FLT as a cell pro-liferation marker: comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol , 2002, 29(3): 281-287.
[27] Dittmann H, Dohmen BM, Kehlbach R, et al. Early changes in [18F]FLT uptake after chemotherapy: an experimental study. Eur J Nucl Med Mol Imaging , 2002, 29(11):1462-1469.
[28] 谭业颖,田嘉禾,汤义军,等. 18F-FLT与18F-FDG评估化疗早期反应的细胞学研究. 中国医学影像学杂志,2009,17(6):442-444.
[29] Sugiyama M, Sakahara H, Sato K, et al. Evaluation of 3'-deoxy-3'-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med, 2004, 45(10):1754-1758.
[30] Waldherr C, Mellinghoff IK, Tran C, et al. Monitoring antiprolifera-tive responses to kinase inhibitor therapy in mice with 3'-deoxy-3'-18F-fluorothymidine PET. J Nucl Med , 2005, 46(1):114 -120.
[31] Oyama N, Ponde DE, Dence C, et al. Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. J Nucl Med, 2004, 45(3): 519-525.