[1] Rusinek H, De Santi S, Frid D, et al. Regional brain atrophy rate predicts future cognitive decline: 6-year longitudinal MR imaging study of normal aging. Radiology, 2003, 229(3): 691-696.
[2] Dimou E, Booij J, Rodrigues M, et al. Amyloid PET and MRI in Alzheimer's disease and mild cognitive impairment. Curr Alzheimer Res, 2009, 6(3): 312-319.
[3] Valotassiou V, Archimandritis S, Sifakis N, et al. Alzheimer's disease: spect and pet tracers for beta-amyloid imaging. Curr Alzheimer Res, 2010, 7(6): 477-486.
[4] Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol, 2004, 55(3): 306-319.
[5] Shin J, Lee S Y, Kim S J, et al. Voxel-based analysis of Alzheimer's disease PET imaging using a triplet of radiotracers: PIB, FDDNP, and FDG. Neuroimage, 2010, 52(2): 488-496.
[6] Wong D F, Rosenberg PB, Zhou Y, et al. In vivo imaging of amyloid deposition in Alzheimer Disease using the radioligand 18F-AV-45 (Flobetapir F 18). J Nucl Med, 2010, 51(6): 913-920.
[7] Liu Y, Zhu L, Plössl K, et al. Optimization of automated radiosynthesis of[18F]AV-45: a new PET imaging agent for Alzheimer's disease. Nucl Med Biol, 2010, 37(8): 917-925.
[8] Lin K, Hsu WC, Hsiao IT, et al. Whole-body biodistribution and brain PET imaging with [18F]AV-45, a novel amyloid imaging agent — a pilot study. Nucl Med Biol, 2010, 37(4): 497-508.
[9] Clark CM, Schneider JA, Bedell BJ, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA, 2011, 305(3): 275-283.
[10] Verhoeff NP, Wilson AA, Takeshita S, et al. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry, 2004, 12(6): 584-595.
[11] Kudo Y, Okamura N, Furumoto S, et al. 2-(2-[2-Dimethylaminothiazol-5-yl]ethenyl)-6-(2-[fluoro]ethoxy)benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer's disease patients. J Nucl Med, 2007, 48(4): 553-561.
[12] Swahn B, Wensbo D, Sandell J, et al. Synthesis and evaluation of 2-pyridylbenzothiazole, 2-pyridylbenzoxazole and 2-pyridylbenzofuran derivatives as 11C-PET imaging agents for beta-amyloid plaques. Bioorg Med Chem Lett, 2010, 20(6):1976-1980.
[13] Johnson AE, Jeppsson F, Sandell J, et al. AZD2184: a radioligand for sensitive detection of beta-amyloid deposits. J Neurochem, 2009, 108(5): 1177-1186.
[14] Koole M, Lewis DM, Buckley C, et al. Whole-Body biodistribution and radiation dosimetry of 18F-GE067: a radioligand for in vivo brain amyloid imaging. J Nucl Med, 2009, 50(5): 818-822.
[15] Rowe CC, Ackerman U, Browne W, et al. Imaging of amyloid beta in Alzheimer's disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol, 2008, 7(2): 129-135.
[16] Cheng Y, Ono M, Kimura H, et al. Fluorinated benzofuran derivatives for PET imaging of β-amyloid plaques in Alzheimer's disease brains. ACS Med Chemistry Lett, 2010, 1(7): 321-325.
[17] Ono M, Cheng Y, Kimura H, et al. Novel 18F-labeled benzofuran derivatives with improved properties for positron emission tomography(PET) imaging of β-amyloid plaques in Alzheimer's brains. J Med Chem, 2011, 54(8): 2971-2979.
[18] Arriagada PV, Growdon JH, Hedley-Whyte ET, et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology, 1992, 42(3 Pt1): 631-639.
[19] Ceravolo R, Borghetti D, Kiferle L, et al. CSF phosporylated TAU protein levels correlate with cerebral glucose metabolism assessed with PET in Alzheimer's disease. Brain Res Bull, 2008, 76(1-2):80-84.
[20] Shin J, Lee SY, Kim SH, et al. Multitracer PET imaging of amyloid plaques and neurofibrillary tangles in Alzheimer's disease. Neuroimage, 2008, 43(2): 236-244.
[21] Small GW, Kepe V, Ercoli LM, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med, 2006, 355(25): 2652-2663.
[22] Powell MR, Smith GE, Knopman DS, et al. Cognitive measures predict pathologic Alzheimer disease. Arch Neurol, 2006, 63(6): 865-868.
[23] Fodero-Tavoletti MT, Okamura N, Furumoto S, et al. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer's disease. Brain, 2011, 134(Pt 4): 1089-1100.
[24] Okamura N, Suemoto T, Furumoto S, et al. Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer's disease. J Neurosci, 2005, 25(47):10857-10862.
[25] Velasco A, Fraser G, Delobel P, et al. Detection of filamentous tau inclusions by the fluorescent Congo red derivative FSB [(trans, trans)-1-fluoro-2, 5-bis(3-hydroxycarbonyl-4-hydroxy)styrylbenzene]. FEBS Lett, 2008, 582(6): 901-906.
[26] Mohorko N, Repov G, Popovic M, et al. Curcumin labeling of neuronal fibrillar tau inclusions in human brain samples. J Neuropathol Exp Neurol, 2010, 69(4): 405-414.
[27] Ono M, Hayashi S, Matsumura K, et al. Rhodanine and thiohydantoin derivatives for detecting tau pathology in Alzheimer's brains. ACS Chem Neurosci, 2011, 2(5): 269-275.
[28] Honson NS, Johnson RL, Huang W, et al. Differentiating Alzheimer disease-associated aggregates with small molecules. Neurobiol Dis, 2007, 28(3): 251-260.
[29] Matsumura K, Ono M, Hayashi S, et al. Phenyldiazenyl benzothiazole derivatives as probes for in vivo imaging of neurofibrillary tangles in Alzheimer's disease brains. Med Chem Comm, 2011, 2(7):596-600.
[30] Mosconi L, Berti V, Glodzik L, et al. Pre-clinical detection of Alzheimer's disease using FDG-PET, with or without amyloid imaging. J Alzheimers Dis, 2010, 20(3): 843-854.
[31] Kippenhan JS, Barker WW, Pascal S, et al. Evaluation of a neural-network classifier for PET scans of normal and Alzheimer's disease subjects. J Nucl Med, 1992, 33(8):1459-1467.
[32] Mosconi L, Tsui WH, Herholz K, et al. Multicenter Standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's Disease, and other dementias. J Nucl Med, 2008, 49(3): 390-398.
[33] Li Y, Rinne JO, Mosconi L, et al. Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer's disease. Eur J Nucl Med Mol Imaging, 2008, 35(12):2169-2181.
[34] Kadir A, Almkvist O, Forsberg A, et al. Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer's disease. Neurobiol Aging, 2012, 33(1): 191-198.
[35] Berti V, Osorio RS, Mosconi L, et al. Early detection of Alzheimer's disease with PET imaging. Neurodegener Dis, 2010, 7(1-3): 131-135.
[36] Ellis JR, Nathan PJ, Villemagne VL, et al. Galantamine-induced improvements in cognitive function are not related to alterations in alpha(4)beta (2)nicotinic receptors in early Alzheimer's disease as measured in vivo by 2-[18F]fluoro-A-85380 PET. Psychopharmacology (Berl), 2009, 202(1-3): 79-91.
[37] Ellis JR, Villemagne VL, Nathan PJ, et al. Relationship between nicotinic receptors and cognitive function in early Alzheimer's disease: a 2-[18F]fluoro-A-85380 PET study. Neurobiol Learn Mem, 2008, 90(2): 404-412.
[38] Gao M, Wang M, Hutchins GD, et al. [11C]Dimebon, radiosynthesis and lipophilicity of a new potential PET agent for imaging of Alzheimer's disease and Huntington's disease. Bioorg Med Chem Lett, 2010, 20(8): 2529-2532.
[39] Santhosh L, Estok KM, Vogel RS, et al. Regional distribution and behavioral correlates of 5-HT(2A) receptors in Alzheimer's disease with [18F]deuteroaltanserin and PET. Psychiatry Res, 2009, 173(3):212-217.
[40] Truchot L, Costes N, Zimmer L, et al. A distinct [18F]MPPF PET profile in amnestic mild cognitive impairment compared to mild Alzheimer's disease. Neuroimage, 2008, 40(3):1251-1256.
[41] Marner L, Frokjaer VG, Kalbitzer J, et al. Loss of serotonin 2A receptors exceeds loss of serotonergic projections in early Alzheimer's disease: a combined [11C]DASB and [18F]altanserin-PET study. Neurobiol Aging, 2012, 33(3): 479-487.
[42] Fukumitsu N, Ishii K, Kimura Y, et al. Adenosine A(1) receptors using 8-dicyclopropylmethyl-1-[11C]methyl-3-propylxanthine PET in Alzheimer's disease. Ann Nucl Med, 2008, 22(10): 841-847.
[43] Edison P, Archer HA, Gerhard A, et al. Microglia, amyloid, and cognition in Alzheimer's disease: An [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis, 2008, 32(3): 412-419.
[44] Venneti S, Lopresti BJ, Wang G, et al. PK11195 labels activated microglia in Alzheimer's disease and in vivo in a mouse model using PET. Neurobiol Aging, 2009, 30(8): 1217-1226.
[45] Esposito G, Giovacchini G, Liow JS, et al. Imaging neuroinflammation in Alzheimer's disease with radiolabeled arachidonic acid and PET. J Nucl Med, 2008, 49(9):1414-1421.