[1] Folkman J. Role of angiogenesis in tumor growth and metastasis[J]. Semin Oncol, 2002, 29(6 Suppl 16):S15-18.
[2] Beer AJ, Haubner R, Sarbia M, et al. Positron emission tomography using[18F]Galacto-RGD identifies the level of integrin alpha(v) beta3 expression in man[J]. Clin Cancer Res, 2006, 12(13):3942-3949.
[3] Liu Z, Wang F. Development of RGD-Based Radiotracers for Tumor Imaging and Therapy:Translating from Bench to Bedside[J]. Curr Mol Med, 2013, 13(10):1487-1505.
[4]

Jiao Y, Feng X, Zhan Y, et al. Matrix metalloproteinase-2 promotes αvβ3 integrin-mediated adhesion and migration of human melanoma cells by cleaving fibronectin[J/OL]. PLoS One, 2012, 7(7): e41591[2013-01-15]. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0041591.

[5] Haubner R, Wester HJ, Reuning U, et al. Radiolabeled αvβ3 integrin antagonists:a new class of tracers for tumor targeting[J]. J Nucl Med, 1999, 40(6):1061-1071.
[6] Monaco A, Zoete V, Alghisi GC, et al. Synthesis and in vitro evaluation of a novel radioligand for αvβ3 integrin receptor imaging:[18F]FPPA-c(RGDfK)[J]. Bioorg Med Chem Lett, 2013, 23(22):6068-6072.
[7] Decristoforo C, Hernandez Gonzalez I, Carlsen J, et al. 68Ga-and 111In-labelled DOTARGD peptides for imaging of αvβ3 integrin expression[J]. Eur J Nucl Med Mol Imaging, 2008, 35(8):1507-1515.
[8] Liu Z, Niu G, Shi J, et al. 68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers:promising agents for tumor integrin alphavbeta3 PET imaging[J]. Eur J Nucl Med Mol Imaging, 2009, 36(6):947-957.
[9] Boswell CA, Sun X, Niu W, et al. Comparative in vivo stability of copper-64- labeled cross-bridged and conventional tetraazamacrocyclic complexes[J]. J Med Chem, 2004, 47(6):1465-1474.
[10] Zhou Y, Kim YS, Chakraborty S, et al. 99mTc-labeled cyclic RGD peptides for noninvasive monitoring of tumor integrin αVβ3 expression[J]. Mol Imaging, 2011, 10(5):386-397.
[11] Wang L, Shi J, Kim YS, et al. Improving tumor-targeting capability and pharmacokinetics of 99mTc-labeled cyclic RGD dimers with PEG4 linkers[J]. Mol Pharm, 2009, 6(1):231-245.
[12] Selvaraj R, Liu S, Hassink M, et al. Tetrazine-trans-cyclooctene ligation for the rapid construction of integrin αvβ3 targeted PET tracer based on a cyclic RGD peptide[J]. Bioorg Med Chem Lett, 2011, 21(17):5011-5014.
[13] 靳存敬, 史继云, 刘妍, 等. 99Tcm标记的PEG4/2PEG4修饰的环状RGD二聚体体内外性质的对比[J].核化学与放射化学, 2010, 32(5):287-292.
[14] Ma Q, Ji B, Jia B, et al. Differential diagnosis of solitary pulmonary nodules using 99mTc-3P4-RGD2 scintigraphy[J]. Eur J Nucl Med Mol Imaging, 2011, 38(12):2145-2152.
[15] Dijkgraaf I, Yim CB, Franssen GM, et al. PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono-, di- and tetrameric RGD peptides[J]. Eur J Nucl Med Mol Imaging, 2011, 38(1):128-137.
[16] Lee HY, Li Z, Chen K, et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic(RGD)-conjugated radiolabeled iron oxide nanoparticles[J]. J Nucl Med, 2008, 49(8):1371-1379.
[17] Jackson AB, Nanda PK, Rold TL, et al. 64Cu-NO2A-RGD-Glu-6-Ahx-BBN(7-14)NH2:a heterodimeric targeting vector for positron emission tomography imaging of prostate cancer[J]. Nucl Med Biol, 2012, 39(3):377-387.
[18] Haubner R, Beer AJ, Wang H, et al. Positron emission tomography tracers for imaging angiogenesis[J]. Eur J nucl Med Mol Imaging, 2010, 37 suppl 1:S86-103.