[1] 韩苏军, 张思维, 陈万青, 等.  中国前列腺癌发病现状和流行趋势分析[J]. 临床肿瘤学杂志, 2013, 18(4): 330-334.   doi: 10.3969/j.issn.1009-0460.2013.04.009
Han SJ, Zhang SW, Chen WQ, et al.  Analysis of the status and trends of prostate cancer incidence in China[J]. Chin Clin Oncol, 2013, 18(4): 330-334.   doi: 10.3969/j.issn.1009-0460.2013.04.009
[2]

Johnson DC, Reiter RE. Multi-parametric magnetic resonance imaging as a management decision tool[J/OL]. Transl Androl Urol, 2017, 6(3): 472−482[2020-11-09]. https://tau.amegroups.com/article/view/14927/15455. DOI: 10.21037/tau.2017.05.22.

[3] Taitt HE.  Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location[J]. Am J Men's Health, 2018, 12(6): 1807-1823.   doi: 10.1177/1557988318798279
[4] Center MM, Jemal A, Lortet-Tieulent J, et al.  International variation in prostate cancer incidence and mortality rates[J]. Eur Urol, 2012, 61(6): 1079-1092.   doi: 10.1016/j.eururo.2012.02.054
[5] Brawley OW.  Prostate cancer epidemiology in the United States[J]. World J Urol, 2012, 30(2): 195-200.   doi: 10.1007/s00345-012-0824-2
[6] Bashir MN.  Epidemiology of prostate cancer[J]. Asian Pac J Cancer Prev, 2015, 16(13): 5137-5141.   doi: 10.7314/apjcp.2015.16.13.5137
[7]

关有彦, 邢念增, 寿建忠, 等. 全球泌尿系统常见恶性肿瘤流行病学情况及我国现状分析[C]//2019中国肿瘤学大会论文集. 重庆: 中国抗癌协会, 2019: 127−128.

Guan YY, Xing NZ, Shou JZ, et al. Analysis on the epidemiology of common malignant tumors of urinary system in the world and the present situation in China[C]//Proceedings of the Chinese Congress of Oncology 2019. Chongqing: Chinese Anti-Cancer Association, 2019: 127−128.

[8] 叶定伟, 朱耀.  中国前列腺癌的流行病学概述和启示[J]. 中华外科杂志, 2015, 53(4): 249-252.   doi: 10.3760/cma.j.issn.0529-5815.2015.04.003
Ye DW, Zhu Y.  Epidemiology of prostate cancer in China: an overview and clinical implication[J]. Chin J Surg, 2015, 53(4): 249-252.   doi: 10.3760/cma.j.issn.0529-5815.2015.04.003
[9]

胡家玮. DKI、IVIM、DTI在前列腺癌预后分组的应用研究[D]. 大连: 大连医科大学, 2020.

Hu JW. Application of DKI, IVIM and DTI in prognostic Gleason group[D]. Dalian: Dalian Medical University, 2020.

[10] 薛三宝.  DCE-MRI联合DWI在前列腺癌患者诊断中的应用价值[J]. 中外医疗, 2020, 39(4): 174-176.   doi: 10.16662/j.cnki.1674-0742.2020.04.174
Xue SB.  The value of DCE-MRI combined with DWI in the diagnosis of patients with prostate cancer[J]. China Foreign Med Treat, 2020, 39(4): 174-176.   doi: 10.16662/j.cnki.1674-0742.2020.04.174
[11] Zhao N, Ma C, Ye XL, et al.  The feasibility of b-value maps based on threshold DWI for detection of breast cancer: a case-control STROBE compliant study[J]. Medicine, 2019, 98(44): e17640-.   doi: 10.1097/MD.0000000000017640
[12] Petersen LJ, Nielsen JB, Langkilde NC, et al.  68Ga-PSMA PET/CT compared with MRI/CT and diffusion-weighted MRI for primary lymph node staging prior to definitive radiotherapy in prostate cancer: a prospective diagnostic test accuracy study[J]. World J Urol, 2020, 38(4): 939-948.   doi: 10.1007/s00345-019-02846-z
[13]

Li Y, Han DH, Wu P, et al. Comparison of 68Ga-PSMA-617 PET/CT with mpMRI for the detection of PCa in patients with a PSA level of 4-20 ng/ml before the initial biopsy[J/OL]. Sci Rep, 2020, 10(1): 10963[2020-11-09]. https://www.nature.com/articles/s41598-020-67385-9. DOI: 10.1038/s41598-020-67385-9.

[14] 王庆云, 吴凌梅, 王庆利, 等.  CT联合骨扫描检查对前列腺癌骨转移的诊断[J]. 解放军预防医学杂志, 2019, 37(12): 121-122, 125.
Wang QY, Wu LM, Wang QL, et al.  CT combined with bone scan for the diagnosis of prostate cancer with bone metastases[J]. J Prev Med Chin People's Liberat Army, 2019, 37(12): 121-122, 125.
[15] Jia JB, Houshyar R, Verma S, et al.  Prostate cancer on computed tomography: a direct comparison with multi-parametric magnetic resonance imaging and tissue pathology[J]. Eur J Radiol, 2016, 85(1): 261-267.   doi: 10.1016/j.ejrad.2015.10.013
[16] Hama Y, Kaji T.  Long-term follow-up results of CT-guided daily adaptive radiation therapy for localized prostate cancer[J]. Anticancer Res, 2018, 38(10): 5959-5962.   doi: 10.21873/anticanres.12942
[17] 邢桂林.  前列腺癌诊断中CT与MRI检查的价值对比分析[J]. 影像研究与医学应用, 2020, 4(11): 17-18.
Xing GL.  Comparative analysis of the value of CT and MRI in the diagnosis of prostate cancer[J]. J Imaging Res Med Appl, 2020, 4(11): 17-18.
[18] Eapen RS, Nzenza TC, Murphy DG, et al.  PSMA PET applications in the prostate cancer journey: from diagnosis to theranostics[J]. World J Urol, 2019, 37(7): 1255-1261.   doi: 10.1007/s00345-018-2524-z
[19] Takahashi N, Inoue T, Lee J, et al.  The roles of PET and PET/CT in the diagnosis and management of prostate cancer[J]. Oncology, 2007, 72(3/4): 226-233.   doi: 10.1159/000112946
[20] Liu YY.  Diagnostic role of fluorodeoxyglucose positron emission tomography-computed tomography in prostate cancer[J]. Oncol Lett, 2014, 7(6): 2013-2018.   doi: 10.3892/ol.2014.1997
[21] Ramírez de Molina A, Rodríguez-González A, Gutiérrez R, et al.  Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers[J]. Biochem Biophys Res Commun, 2002, 296(3): 580-583.   doi: 10.1016/s0006-291x(02)00920-8
[22] Hara T, Kosaka N, Kishi H.  PET imaging of prostate cancer using carbon-11-choline[J]. J Nucl Med, 1998, 39(6): 990-995.
[23] Samper Ots P, Luis Cardo A, Vallejo Ocaña C, et al.  Diagnostic performance of 18F-choline PET-CT in prostate cancer[J]. Clin Transl Oncol, 2019, 21(6): 766-773.   doi: 10.1007/s12094-018-1985-2
[24]

Kitajima K, Yamamoto S, Odawara S, et al. Diagnostic performance of 11C-choline PET/CT and FDG PET/CT in prostate cancer[J/OL]. Acta Med Okayama, 2018, 72(3): 289−296[2020-11-09]. https://ousar.lib.okayama-u.ac.jp/ja/56075. DOI: 10.18926/AMO/56075.

[25] Kotzerke J, Volkmer BG, Glatting G, et al.  Intraindividual comparison of [11C]acetate and[11C]choline PET for detection of metastases of prostate cancer[J]. Nuklearmedizin, 2003, 42(1): 25-30.   doi: 10.1055/s-0038-1623902
[26] Nanni C, Schiavina R, Brunocilla E, et al.  18F-FACBC compared with 11C-choline PET/CT in patients with biochemical relapse after radical prostatectomy: a prospective study in 28 patients[J]. Clin Genitourin Cancer, 2014, 12(2): 106-110.   doi: 10.1016/j.clgc.2013.08.002
[27] 黄海, 赖义明, 何旺, 等.  PSMA对JNK/SAPK通路的激活及对前列腺癌细胞凋亡的调控[J]. 中国病理生理杂志, 2014, 30(5): 785-791.   doi: 10.3969/j.issn.1000-4718.2014.05.003
Huang H, Lai YM, He W, et al.  PSMA activates JNK/SAPK pathway and regulates apoptosis of prostate cancer cells[J]. Chin J Pathophysiol, 2014, 30(5): 785-791.   doi: 10.3969/j.issn.1000-4718.2014.05.003
[28]

Yu CY, Desai B, Ji LY, et al. Comparative performance of PET tracers in biochemical recurrence of prostate cancer: a critical analysis of literature[J/OL]. Am J Nucl Med Mol Imaging, 2014, 4(6): 580−601[2020-11-09]. https://pubmed.ncbi.nlm.nih.gov/25250207.

[29] Sawicki LM, Kirchner J, Buddensieck C, et al.  Prospective comparison of whole-body MRI and 68Ga-PSMA PET/CT for the detection of biochemical recurrence of prostate cancer after radical prostatectomy[J]. Eur J Nucl Med Mol Imaging, 2019, 46(7): 1542-1550.   doi: 10.1007/s00259-019-04308-5
[30] Kuten J, Fahoum I, Savin Z, et al.  Head-to-head comparison of 68Ga-PSMA-11 with 18F-PSMA-1007 PET/CT in staging prostate cancer using histopathology and immunohistochemical analysis as a reference standard[J]. J Nucl Med, 2020, 61(4): 527-532.   doi: 10.2967/jnumed.119.234187
[31] 周星, 申太鹏, 姚玉唐, 等.  一步法合成18F-PSMA-1007及其对前列腺癌的PET/CT显像[J]. 中华核医学与分子影像杂志, 2019, 39(10): 606-609.   doi: 10.3760/cma.j.issn.2095-2848.2019.10.007
Zhou X, Shen TP, Yao YT, et al.  Synthesis of 18F-PSMA-1007 by one-step method and PET/CT imaging in prostate cancer[J]. Chin J Nucl Med Mol Imaging, 2019, 39(10): 606-609.   doi: 10.3760/cma.j.issn.2095-2848.2019.10.007
[32] Giesel FL, Will L, Lawal I, et al.  Intraindividual comparison of 18F-PSMA-1007 and 18F-DCFPyL PET/CT in the prospective evaluation of patients with newly diagnosed prostate carcinoma: a pilot study[J]. J Nucl Med, 2018, 59(7): 1076-1080.   doi: 10.2967/jnumed.117.204669
[33] Lindenberg L, Mena E, Turkbey B, et al.  Evaluating biochemically recurrent prostate cancer: histologic validation of 18F-DCFPyL PET/CT with comparison to multiparametric MRI[J]. Radiology, 2020, 296(3): 564-572.   doi: 10.1148/radiol.2020192018