[1] de Camargo B, de Oliveira Santos M, Rebelo MS, et al. Cancer incidence among children and adolescents in Brazil: first report of 14 population-based cancer registries. Int J Cancer, 2010, 126(3): 715-720.
[2] Li J, Thompson TD, Miller JW, et al. Cancer incidence among children and adolescents in the United States, 2001-2003. Pediatrics, 2008, 121(6): e1470-1477.
[3] 鲍萍萍, 郑莹, 王春芳, 等. 2002~2004年上海市儿童恶性肿瘤发病特征.中国肿瘤, 2009, 18(2): 119-122.
[4] Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin, 2010, 60(5): 277-300.
[5] Higashi T, Kudo T, Kinuya S. Radioactive iodine(131I) therapy for differentiated thyroid cancer in Japan: current issues with historical review and future perspective. Ann Nucl Med, 2012, 26(2): 99-112.
[6] Chawla SC, Federman N, Zhang D, et al. Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol, 2010, 40(5): 681-686.
[7] Alessio AM, Kinahan PE, Manchanda V, et al. Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med, 2009, 50(10): 1570-1577.
[8] Fahey FH. Dosimetry of Pediatric PET/CT. J Nucl Med, 2009, 50(9): 1483-1491.
[9] Gelfand MJ, Lemen LC. PET/CT and SPECT/CT dosimetry in children: the challenge to the pediatric imager. Semin Nucl Med, 2007, 37(5): 391-398.
[10] Hahn K, Pfluger T. Is PET/CT necessary in paediatric oncology? Against. Eur J Nucl Med Mol Imaging, 2006, 33(8): 966-968.
[11] Riad R, Omar W, Kotb M, et al. Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imaging, 2010, 37(2): 319-329.
[12] Olson MR, Donaldson SS. Treatment of pediatric hodgkin lymphoma. Curr Treat Options Oncol, 2008, 9(1): 81-94.
[13] Freed J, Kelly KM. Current approaches to the management of pediatric Hodgkin lymphoma. Paediatr Drugs, 2010, 12(2): 85-98.
[14] Miller E, Metser U, Avrahami G, et al. Role of 18F-FDG PET/CT in staging and follow-up of lymphoma in pediatric and young adult patients. J Comput Assist Tomogr, 2006, 30(4): 689-694.
[15] Punwani S, Taylor SA, Bainbridge A, et al. Pediatric and adolescent lymphoma: comparison of whole-body STIR half-FourierRARE MR imaging with an enhanced PET/CT reference for initial staging. Radiology, 2010, 255(1): 182-190.
[16] Sharma P, Gupta A, Patel C, et al. Pediatric lymphoma: metabolic tumor burden as a quantitative index for treatment response evaluation. Ann Nucl Med, 2012, 26(1): 58-66.
[17] Mardis N, Wong CY. The accuracy of PET(CT) in evaluating pediatric lymphoma. J Pediatr Hematol Oncol, 2007, 29(9): 667-668.
[18] Levine JM, Weiner M, Kelly KM. Routine use of PET scans after completion of therapy in pediatric Hodgkin diseaseresults in a high false positive rate. J Pediatr Hematol Oncol, 2006, 28(11): 711-714.
[19] Riad R, Omar W, Sidhom I, et al. False-positive F-18 FDG uptake in PET/CT studies in pediatric patients withabdominal Burkitt's lymphoma. Nucl Med Commun, 2010, 31(3): 232-238.
[20] Mody RJ, Bui C, Hutchinson RJ, et al. Comparison of 18F Flurodeoxyglucose PET with Ga-67 scintigraphy andconventional imaging modalities in pediatric lymphoma. Leuk Lymphoma, 2007, 48(4): 699-707.
[21] Hines-Thomas M, Kaste SC, Hudson MM, et al. Comparison of gallium and PET scans at diagnosis and follow-up of pediatricpatients with Hodgkin lymphoma. Pediatr Blood Cancer, 2008, 51(2): 198-203.
[22] Morris EB, Gajjar A, Okuma JO, et al. Survival and late mortality in long-term survivors of pediatric CNS tumors. J Clin Oncol, 2007, 25(12): 1532-1538.
[23] Arora B, Parikh PM. PET-CT scan in pediatric oncology: where, when, how and at what price. Indian J Cancer, 2010, 47(4): 355-359.
[24] Pirotte BJ, Lubansu A, Massager N, et al. Clinical interest of integrating positron emission tomography imaging in theworkup of 55 children with incidentally diagnosed brain lesions. J Neurosurg Pediatr, 2010, 5(5): 479-485.
[25] Pirotte BJ, Lubansu A, Massager N, et al. Clinical impact of integrating positron emission tomography during surgery in 85 children with brain tumors. J Neurosurg Pediatr, 2010, 5(5): 486-499.
[26] Pirotte B, Levivier M, Morelli D, et al. Positron emission tomography for the early postsurgical evaluation of pediatricbrain tumors. Childs Nerv Syst, 2005, 21(4): 294-300.
[27] Kruer MC, Kaplan AM, Etzl MM Jr, et al. The value of positron emission tomography and proliferation index in predictingprogression in low-grade astrocytomas of childhood. J Neurooncol, 2009, 95(2): 239-245.
[28] Zukotynski KA, Fahey FH, Kocak M, et al. Evaluation of 18F-FDG PET and MRI associations in pediatric diffuse intrinsicbrain stem glioma: a report from the Pediatric Brain Tumor Consortium. J Nucl Med, 2011, 52(2): 188-195.
[29] Spence AM, Muzi M, Mankoff DA, et al. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumorand normal gray matter. J Nucl Med, 2004, 45(10): 1653-1659.
[30] Utriainen M, Metsahonkala L, Salmi TT, et al. Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer, 2002, 95(6): 1376-1386.
[31] Phi JH, Paeng JC, Lee HS, et al. Evaluation of focal cortical dysplasia and mixed neuronal and glial tumors inpediatric epilepsy patients using 18F-FDG and 11C-methionine pet. J Nucl Med, 2010, 51(5): 728-734.
[32] Chen W, Silverman DH, Delaloye S, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET andevaluation of diagnostic accuracy. J Nucl Med, 2006, 47(6): 904-911.
[33] Walter F, Federman N, Apichairuk W, et al. 18F-fluorodeoxyglucose uptake of bone and soft tissue sarcomas in pediatricpatients. Pediatr Hematol Oncol, 2011, 28(7): 579-587.
[34] Bestic JM, Peterson JJ, Bancroft LW. Pediatric FDG PET/CT: Physiologic uptake, normal variants, and benign conditions[corrected]. Radiographics, 2009, 29(5): 1487-1500.
[35] Ricard F, Cimarelli S, Deshayes E, et al. Additional Benefit of F-18 FDG PET/CT in the staging and follow-up of pediatricrhabdomyosarcoma. Clin Nucl Med, 2011, 36(8): 672-677.
[36] Tateishi U, Yamaguchi U, Seki K, et al. Bone and soft-tissue sarcoma: preoperative staging with fluorine 18fluorodeoxyglucose PET/CT and conventional imaging. Radiology, 2007, 245(3): 839-847.
[37] Walter F, Czernin J, Hall T, et al. Is there a need for dedicated bone imaging in addition to 18F-FDG PET/CT imaging in pediatric sarcoma patients?. J Pediatr Hematol Oncol, 2012, 34(2): 131-136.
[38] Bentzen L, Keiding S, Nordsmark M, et al. Tumour oxygenation assessed by 18F-fluoromisonidazole PET and polarographicneedle electrodes in human soft tissue tumours. Radiother Oncol, 2003, 67(3): 339-344.
[39] Tateishi U, Yamaguchi U, Maeda T, et al. Staging performance of carbon-11 choline positron emission tomography/computed tomography in patients with bone and soft tissue sarcoma: comparison withconventional imaging. Cancer Sci, 2006, 97(10): 1125-1128.
[40] Lpci E, Piccardo A, Nanni C, et al. 18F-DOPA PET/CT in neuroblastoma: comparison of conventional imaging with CT/MR. Clin Nucl Med, 2012, 37(4): e73-78.
[41] Levine DS, Metzger DL, Nadel HR, et al. Novel use of F-DOPA PET/CT imaging in a child with paraganglioma/pheochromocytomasyndrome. Pediatr Radiol, 2011, 41(10): 1321-1325.
[42] Radhakrishnan V, Kumar R, Malhotra A, et al. Role of PET/CT in staging and evaluation of treatment response after 3 cycles of chemotherapy in locally advanced retinoblastoma: a prospective study. J Nucl Med, 2012, 53(2): 191-198.
[43] Bertagna F, Orlando E, Bosio G, et al. Incremental diagnostic value of F-18 FDG PET/CT over MRI in a pediatric patientwith suspected hepatoblastoma and histologic diagnosis of focal nodularhyperplasia. Clin Nucl Med, 2011, 36(4): 305-308.
[44] Kumar J, Seith A, Kumar A, et al. Whole-body MR imaging with the use of parallel imaging for detection of skeletal metastases in pediatric patients with small-cell neoplasms: comparison withskeletal scintigraphy and FDG PET/CT. Pediatr Radiol, 2008, 38(9): 953-962.
[45] Piwkowski P, Kolodziejczyk A, Macioszek A, et al. Potential role of PET-CT in chemotherapy efficacy assessment and recurrencediagnosis in a patient with a Wilms' tumour. Nucl Med Rev Cent East Eur, 2011, 14(1): 33-35.
[46] Mackie GC, Shulkin BL, Ribeiro RC, et al. Use of 18F-fluorodeoxyglucose positron emission tomography in evaluating locallyrecurrent and metastatic adrenocortical carcinoma. J Clin Endocrinol Metab, 2006, 91(7): 2665-2671.