[1] 中国临床肿瘤学会指南工作委员会.  中国临床肿瘤学会(CSCO)分化型甲状腺癌诊疗指南2021[J]. 肿瘤预防与治疗, 2021, 34(12): 1164-1201.   doi: 10.3969/j.issn.1674-0904.2021.12.013
Guidelines Working Committee of Chinese Society of Clinical Oncology.  Guidelines of Chinese Society of Clinical Oncology (CSCO) differentiated thyroid cancer[J]. J Cancer Control Treat, 2021, 34(12): 1164-1201.   doi: 10.3969/j.issn.1674-0904.2021.12.013
[2] Sung H, Ferlay J, Siegel RL, et al.  Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.   doi: 10.3322/caac.21660
[3] Song HJ, Qiu ZL, Shen CT, et al.  Pulmonary metastases in differentiated thyroid cancer: efficacy of radioiodine therapy and prognostic factors[J]. Eur J Endocrinol, 2015, 173(3): 399-408.   doi: 10.1530/EJE-15-0296
[4]

Chan HP, Samala RK, Hadjiiski LM, et al. Deep learning in medical image analysis[M]//Lee G, Fujita H. Deep Learning in Medical Image Analysis. Cham: Springer, 2020: 3−21. DOI: 10.1007/978-3-030-33128-3_1.

[5] Li MM, Dal Maso L, Vaccarella S.  Global trends in thyroid cancer incidence and the impact of overdiagnosis[J]. Lancet Diabetes Endocrinol, 2020, 8(6): 468-470.   doi: 10.1016/S2213-8587(20)30115-7
[6]

Wang L, Yang SJ, Yang S, et al. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network[J/OL]. World J Surg Oncol, 2019, 17(1): 12[2022-03-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6325802/. DOI: 10.1186/s12957-019-1558-z.

[7] Zhang B, Tian J, Pei SF, et al.  Machine learning–assisted system for thyroid nodule diagnosis[J]. Thyroid, 2019, 29(6): 858-867.   doi: 10.1089/thy.2018.0380
[8] Chi JN, Walia E, Babyn P, et al.  Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network[J]. J Digit Imaging, 2017, 30(4): 477-486.   doi: 10.1007/s10278-017-9997-y
[9] Li XC, Zhang S, Zhang Q, et al.  Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study[J]. Lancet Oncol, 2019, 20(2): 193-201.   doi: 10.1016/S1470-2045(18)30762-9
[10]

Peng S, Liu YH, Lv WM, et al. Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study[J/OL]. Lancet Digit Health, 2021, 3(4): e250−e259[2022-03-20]. https://doi.org/10.1016/s2589-7500(21)00041-8. DOI: 10.1016/S2589-7500(21)00041-8.

[11] Buda M, Wildman-Tobriner B, Hoang JK, et al.  Management of thyroid nodules seen on us images: deep learning may match performance of radiologists[J]. Radiology, 2019, 292(3): 695-701.   doi: 10.1148/radiol.2019181343
[12] Kim HL, Ha EJ, Han MR.  Real-world performance of computer-aided diagnosis system for thyroid nodules using ultrasonography[J]. Ultrasound Med Biol, 2019, 45(10): 2672-2678.   doi: 10.1016/j.ultrasmedbio.2019.05.032
[13] Girolami I, Marletta S, Pantanowitz L, et al.  Impact of image analysis and artificial intelligence in thyroid pathology, with particular reference to cytological aspects[J]. Cytopathology, 2020, 31(5): 432-444.   doi: 10.1111/cyt.12828
[14]

Guan Q, Wang YJ, Ping B, et al. Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study[J/OL]. J Cancer, 2019, 10(20): 4876−4882[2022-03-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775529/. DOI: 10.7150/jca.28769.

[15] Bongiovanni M, Spitale A, Faquin WC, et al.  The Bethesda system for reporting thyroid cytopathology: a meta-analysis[J]. Acta Cytol, 2012, 56(4): 333-339.   doi: 10.1159/000339959
[16]

Sanyal P, Mukherjee T, Barui S, et al. Artificial intelligence in cytopathology: a neural network to identify papillary carcinoma on thyroid fine-needle aspiration cytology smears[J/OL]. J Pathol Inform, 2018, 9: 43[2022-03-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289006/. DOI: 10.4103/jpi.jpi_43_18.

[17] Haugen BR, Alexander EK, Bible KC, et al.  2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1-133.   doi: 10.1089/thy.2015.0020
[18]

Hao YY, Choi Y, Babiarz JE, et al. Analytical verification performance of Afirma genomic sequencing classifier in the diagnosis of cytologically indeterminate thyroid nodules[J/OL]. Front Endocrinol (Lausanne), 2019, 10: 438[2022-03-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6620518. DOI: 10.3389/fendo.2019.00438.

[19] Patel KN, Angell TE, Babiarz J, et al.  Performance of a genomic sequencing classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules[J]. JAMA Surg, 2018, 153(9): 817-824.   doi: 10.1001/jamasurg.2018.1153
[20] Steward DL, Carty SE, Sippel RS, et al.  Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study[J]. JAMA Oncol, 2019, 5(2): 204-212.   doi: 10.1001/jamaoncol.2018.4616
[21]

Fu Y, Jung AW, Torne RV, et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis[J/OL]. Nat Cancer, 2020, 1(8): 800−810[2022-03-20]. https://www.nature.com/articles/s43018-020-0085-8. DOI: 10.1038/s43018-020-0085-8.

[22] Wang YJ, Guan Q, Lao I, et al.  Using deep convolutional neural networks for multi-classification of thyroid tumor by histopathology: a large-scale pilot study[J]. Ann Transl Med, 2019, 7(18): 468-.   doi: 10.21037/atm.2019.08.54
[23] Cancer Genome Atlas Research Network.  Integrated genomic characterization of papillary thyroid carcinoma[J]. Cell, 2014, 159(3): 676-690.   doi: 10.1016/j.cell.2014.09.050
[24]

Tsou P, Wu CJ. Mapping driver mutations to histopathological subtypes in papillary thyroid carcinoma: applying a deep convolutional neural network[J/OL]. J Clin Med, 2019, 8(10): 1675[2022-03-20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832421. DOI: 10.3390/jcm8101675.

[25] Wang H, Song B, Ye NR, et al.  Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma[J]. Eur J Radiol, 2020, 122: 108755-.   doi: 10.1016/j.ejrad.2019.108755
[26] Wu XL, Li MY, Cui XW, et al.  Deep multimodal learning for lymph node metastasis prediction of primary thyroid cancer[J]. Phys Med Biol, 2022, 67(3): 035008-.   doi: 10.1088/1361-6560/ac4c47
[27] Yu JH, Deng YH, Liu TT, et al.  Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics[J]. Nat Commun, 2020, 11(1): 4807-.   doi: 10.1038/s41467-020-18497-3
[28] Yazdani Charati J, Janbabaei G, Alipour N, et al.  Survival prediction of gastric cancer patients by Artificial Neural Network model[J]. Gastroenterol Hepatol Bed Bench, 2018, 11(2): 110-117.
[29] Afshar S, Afshar S, Warden E, et al.  Application of artificial neural network in miRNA biomarker selection and precise diagnosis of colorectal cancer[J]. Iran Biomed J, 2019, 23(3): 175-183.   doi: 10.29252/.23.3.175