[1] Sung H, Ferlay J, Siegel RL, et al.  Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.   doi: 10.3322/caac.21660
[2] Momenimovahed Z, Tiznobaik A, Taheri S, et al.  Ovarian cancer in the world: epidemiology and risk factors[J]. Int J Womens Health, 2019, 11: 287-299.   doi: 10.2147/IJWH.S197604
[3]

赫捷, 魏文强, 张思维, 等. 2019 年中国肿瘤登记年报[M]. 北京: 人民卫生出版社, 2021: 170−173.

He J, Wei WQ, Zhang SW, et al. 2019 annual report of China cancer registry[M]. Beijing: People's Medical Publishing House, 2021: 170−173.

[4] Delgado Bolton RC, Aide N, Colletti PM, et al.  EANM guideline on the role of 2-[18F]FDG PET/CT in diagnosis, staging, prognostic value, therapy assessment and restaging of ovarian cancer, endorsed by the American College of Nuclear Medicine (ACNM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI) and the International Atomic Energy Agency (IAEA)[J]. Eur J Nucl Med Mol Imaging, 2021, 48(10): 3286-3302.   doi: 10.1007/s00259-021-05450-9
[5] Prat J, FIGO committee on gynecologic oncology.  Staging classification for cancer of the ovary, fallopian tube, and peritoneum[J]. Int J Gynaecol Obstet, 2014, 124(1): 1-5.   doi: 10.1016/j.ijgo.2013.10.001
[6] Tsai YJ, Liu C.  Pitfalls on PET/CT due to artifacts and instrumentation[J]. Semin Nucl Med, 2021, 51(6): 646-656.   doi: 10.1053/j.semnuclmed.2021.06.015
[7] Boellaard R, Delgado-Bolton R, Oyen WJ, et al.  FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0[J]. Eur J Nucl Med Mol Imaging, 2015, 42(2): 328-354.   doi: 10.1007/s00259-014-2961-x
[8] Takagi H, Sakamoto J, Osaka Y, et al.  Utility of 18F-fluorodeoxyglucose-positron emission tomography in the differential diagnosis of benign and malignant gynaecological tumours[J]. J Med Imaging Radiat Oncol, 2018, 62(4): 471-479.   doi: 10.1111/1754-9485.12707
[9] Lee SS, Park JS, Lee KB, et al.  Diagnostic performance of F-18 FDG PET/CT compared with CA125, HE4, and ROMA for epithelial ovarian cancer[J]. Asian Pac J Cancer Prev, 2021, 22(4): 1123-1127.   doi: 10.31557/APJCP.2021.22.4.1123
[10] Kim C, Chung HH, Oh SW, et al.  Differential diagnosis of borderline ovarian tumors from stageⅠmalignant ovarian tumors using FDG PET/CT[J]. Nucl Med Mol Imaging, 2013, 47(2): 81-88.   doi: 10.1007/s13139-013-0197-5
[11] Yamamoto Y, Oguri H, Yamada R, et al.  Preoperative evaluation of pelvic masses with combined 18F-fluorodeoxyglucose positron emission tomography and computed tomography[J]. Int J Gynaecol Obstet, 2008, 102(2): 124-127.   doi: 10.1016/j.ijgo.2008.02.019
[12] Castellani F, Nganga EC, Dumas L, et al.  Imaging in the pre-operative staging of ovarian cancer[J]. Abdom Radiol (NY), 2019, 44(2): 685-696.   doi: 10.1007/s00261-018-1779-6
[13] Han S, Woo S, Suh CH, et al.  Performance of pre-treatment 18F-fluorodeoxyglucose positron emission tomography/computed tomography for detecting metastasis in ovarian cancer: a systematic review and meta-analysis[J]. J Gynecol Oncol, 2018, 29(6): e98-.   doi: 10.3802/jgo.2018.29.e98
[14] Mimoun C, Rouzier R, Benifla JL, et al.  Preoperative CT or PET/CT to assess pelvic and para-aortic lymph node status in epithelial ovarian cancer? A systematic review and meta-analysis[J]. Diagnostics (Basel), 2021, 11(10): 1748-.   doi: 10.3390/diagnostics11101748
[15] Yao H, Zhang X.  Prediction model of residual neural network for pathological confirmed lymph Node metastasis of ovarian cancer[J]. Biomed Res Int, 2022, 2022: 9646846-.   doi: 10.1155/2022/9646846
[16] Chung HH, Kwon HW, Kang KW, et al.  Prognostic value of preoperative metabolic tumor volume and total lesion glycolysis in patients with epithelial ovarian cancer[J]. Ann Surg Oncol, 2012, 19(6): 1966-1972.   doi: 10.1245/s10434-011-2153-x
[17] Liao S, Lan X, Cao G, et al.  Prognostic predictive value of total lesion glycolysis from 18F-FDG PET/CT in post-surgical patients with epithelial ovarian cancer[J]. Clin Nucl Med, 2013, 38(9): 715-720.   doi: 10.1097/RLU.0b013e31829f57fa
[18] Gallicchio R, Nardelli A, Venetucci A, et al.  F-18 FDG PET/CT metabolic tumor volume predicts overall survival in patients with disseminated epithelial ovarian cancer[J]. Eur J Radiol, 2017, 93: 107-113.   doi: 10.1016/j.ejrad.2017.05.036
[19] Konishi H, Takehara K, Kojima A, et al.  Maximum standardized uptake value of fluorodeoxyglucose positron emission tomography/computed tomography is a prognostic factor in ovarian clear cell adenocarcinoma[J]. Int J Gynecol Cancer, 2014, 24(7): 1190-1194.   doi: 10.1097/IGC.0000000000000180
[20] Kim CY, Jeong SY, Chong GO, et al.  Quantitative metabolic parameters measured on F-18 FDG PET/CT predict survival after relapse in patients with relapsed epithelial ovarian cancer[J]. Gynecol Oncol, 2015, 136(3): 498-504.   doi: 10.1016/j.ygyno.2014.12.032
[21] Perrone AM, Dondi G, Lima GM, et al.  Potential prognostic role of 18F-FDG PET/CT in invasive epithelial ovarian cancer relapse. A preliminary study[J]. Cancers (Basel), 2019, 11(5): 713-.   doi: 10.3390/cancers11050713
[22] Vallius T, Peter A, Auranen A, et al.  18F-FDG-PET/CT can identify histopathological non-responders to platinum-based neoadjuvant chemotherapy in advanced epithelial ovarian cancer[J]. Gynecol Oncol, 2016, 140(1): 29-35.   doi: 10.1016/j.ygyno.2015.10.018
[23] Vallius T, Hynninen J, Kemppainen J, et al.  18F-FDG-PET/CT based total metabolic tumor volume change during neoadjuvant chemotherapy predicts outcome in advanced epithelial ovarian cancer[J]. Eur J Nucl Med Mol Imaging, 2018, 45(7): 1224-1232.   doi: 10.1007/s00259-018-3961-z
[24] Chung YS, Kim HS, Lee JY, et al.  Early assessment of response to neoadjuvant chemotherapy with 18F-FDG-PET/CT in patients with advanced-stage ovarian cancer[J]. Cancer Res Treat, 2020, 52(4): 1211-1218.   doi: 10.4143/crt.2019.506
[25] Chung YS, Kim Y, Kim HS, et al.  Prognostic value of complete metabolic response on 18F-FDG-PET/CT after three cycles of neoadjuvant chemotherapy in advanced high-grade serous ovarian cancer[J]. J Gynecol Oncol, 2022, 33(3): e28-.   doi: 10.3802/jgo.2022.33.e28
[26] García-Talavera P, Alejo E, Arias P, et al.  18F-FDG PET/CT in ovarian cancer recurrence: clinical impact, correlation with ceCT and CA-125, and prognostic value[J]. Rev Esp Med Nucl Imagen Mol (Engl Ed), 2021, 40(4): 207-213.   doi: 10.1016/j.remnie.2020.09.011
[27] Sun J, Cui XW, Li YS, et al.  The value of 18F-FDG PET/CT imaging combined with detection of CA125 and HE4 in the diagnosis of recurrence and metastasis of ovarian cancer[J]. Eur Rev Med Pharmacol Sci, 2020, 24(13): 7276-7283.   doi: 10.26355/eurrev_202007_21882
[28] Gadducci A, Simonetti E, Manca G, et al.  Positron emission tomography/computed tomography in platinum-sensitive recurrent ovarian cancer: a single-center Italian study[J]. Anticancer Res, 2020, 40(4): 2191-2197.   doi: 10.21873/anticanres.14180
[29] Lee YJ, Kim YM, Jung PS, et al.  Diagnostic value of integrated 18F-fluoro-2-deoxyglucose positron emission tomography/computed tomography in recurrent epithelial ovarian cancer: accuracy of patient selection for secondary cytoreduction in 134 patients[J]. J Gynecol Oncol, 2018, 29(3): e36-.   doi: 10.3802/jgo.2018.29.e36
[30] Han EJ, Park HL, Lee YS, et al.  Clinical usefulness of post-treatment FDG PET/CT in patients with ovarian malignancy[J]. Ann Nucl Med, 2016, 30(9): 600-607.   doi: 10.1007/s12149-016-1100-0
[31] Chou HH, Chen CY, Liu FY, et al.  Positron emission tomography in the management of documented or suspected recurrent ovarian cancer[J]. J Formos Med Assoc, 2017, 116(11): 869-879.   doi: 10.1016/j.jfma.2016.12.007
[32] Du XL, Jiang T, Sheng XG, et al.  PET/CT scanning guided intensity-modulated radiotherapy in treatment of recurrent ovarian cancer[J]. Eur J Radiol, 2012, 81(11): 3551-3556.   doi: 10.1016/j.ejrad.2012.03.016
[33] Ponisio MR, Dehdashti F.  A role of PET agents beyond FDG in gynecology[J]. Semin Nucl Med, 2019, 49(6): 501-511.   doi: 10.1053/j.semnuclmed.2019.06.008
[34] Uddin MJ, Wilson AJ, Crews BC, et al.  Discovery of furanone-based radiopharmaceuticals for diagnostic targeting of COX-1 in ovarian cancer[J]. ACS Omega, 2019, 4(5): 9251-9261.   doi: 10.1021/acsomega.9b01093
[35] Körhegyi Z, Rózsa D, Hajdu I, et al.  Synthesis of 68Ga-labeled biopolymer-based nanoparticle imaging agents for positron-emission tomography[J]. Anticancer Res, 2019, 39(5): 2415-2427.   doi: 10.21873/anticanres.13359
[36] Long Y, Shao F, Ji H, et al.  Evaluation of a CD13 and integrin αvβ3 dual-receptor targeted tracer 68Ga-NGR-RGD for ovarian tumor imaging: comparison with 18F-FDG[J]. Front Oncol, 2022, 12: 884554-.   doi: 10.3389/fonc.2022.884554
[37] Lee HS, Schwarz SW, Schubert EK, et al.  The development of 18F fluorthanatrace: a PET radiotracer for imaging poly (ADP-ribose) polymerase-1[J]. Radiol Imaging Cancer, 2022, 4(1): e210070-.   doi: 10.1148/rycan.210070
[38] Gilardi L, Airò Farulla LS, Demirci E, et al.  Imaging cancer-associated fibroblasts (CAFs) with FAPi PET[J]. Biomedicines, 2022, 10(3): 523-.   doi: 10.3390/biomedicines10030523
[39] Metser U, Kulanthaivelu R, Chawla T, et al.  18F-DCFPyL PET/CT in advanced high-grade epithelial ovarian cancer: a prospective pilot study[J]. Front Oncol, 2022, 12: 1025475-.   doi: 10.3389/fonc.2022.1025475
[40] Boyle AJ, Tong J, Zoghbi SS, et al.  Repurposing 11C-PS13 for PET imaging of cyclooxygenase-1 in ovarian cancer xenograft mouse models[J]. J Nucl Med, 2021, 62(5): 665-668.   doi: 10.2967/jnumed.120.249367
[41] Shen G, Ma H, Pang F, et al.  Correlations of 18F-FDG and 18F-FLT uptake on PET with Ki-67 expression in patients with lung cancer: a meta-analysis[J]. Acta Radiol, 2018, 59(2): 188-195.   doi: 10.1177/0284185117706609
[42]

Kołodziej M, Bober B, Saracyn M, et al. The role of PET/CT with 11C-methionine in contemporary nuclear medicine[J]. Wiad Lek, 2020, 73(9 cz. 2): 2076-2079.

[43] Riola-Parada C, García-Cañamaque L, Pérez-Dueñas V, et al.  Simultaneous PET/MRI vs PET/CT in oncology. A systematic review[J]. Rev Esp Med Nucl Imagen Mol, 2016, 35(5): 306-312.   doi: 10.1016/j.remn.2016.06.001
[44] 李亚明.  一体化全身PET/MR设备: 现代医学影像学的新利器[J]. 中国医学影像技术, 2021, 37(11): 1601-1603.   doi: 10.13929/j.issn.1003-3289.2021.11.001
Li YM.  Intergrated whole body PET/MRI: a new modality of modern medical imaging[J]. Chin J Med Imaging Technol, 2021, 37(11): 1601-1603.   doi: 10.13929/j.issn.1003-3289.2021.11.001
[45] Ehman EC, Johnson GB, Villanueva-Meyer JE, et al.  PET/MRI: where might it replace PET/CT?[J]. J Magn Reson Imaging, 2017, 46(5): 1247-1262.   doi: 10.1002/jmri.25711
[46] Zheng M, Xie D, Pan C, et al.  Diagnostic value of 18F-FDG PET/MRI in recurrent pelvis malignancies of female patients: a systematic review and meta-analysis[J]. Nucl Med Commun, 2018, 39(6): 479-485.   doi: 10.1097/MNM.0000000000000839
[47] Nguyen NC, Beriwal S, Moon CH, et al.  Diagnostic value of FDG PET/MRI in females with pelvic malignancy-a systematic review of the literature[J]. Front Oncol, 2020, 10: 519440-.   doi: 10.3389/fonc.2020.519440
[48] Tsuyoshi H, Tsujikawa T, Yamada S, et al.  Diagnostic value of [18F]FDG PET/MRI for staging in patients with ovarian cancer[J]. EJNMMI Res, 2020, 10(1): 117-.   doi: 10.1186/s13550-020-00712-3
[49] Jónsdóttir B, Ripoll MA, Bergman A, et al.  Validation of 18F-FDG PET/MRI and diffusion-weighted MRI for estimating the extent of peritoneal carcinomatosis in ovarian and endometrial cancer–a pilot study[J]. Cancer Imaging, 2021, 21(1): 34-.   doi: 10.1186/s40644-021-00399-2
[50] Taylor EN, Wilson CM, Franco S, et al.  Monitoring therapeutic responses to silicified cancer cell immunotherapy using PET/MRI in a mouse model of disseminated ovarian cancer[J]. Int J Mol Sci, 2022, 23(18): 10525-.   doi: 10.3390/ijms231810525
[51] Jung TY, Jung S, Ryu HS, et al.  The application of magnetic resonance imaging-deformed 11C-methionine-positron emission tomography images in stereotactic radiosurgery[J]. Stereotact Funct Neurosurg, 2019, 97(4): 217-224.   doi: 10.1159/000503732
[52]

Bailey DL, Willowson KP. Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality[J]. Eur J Nucl Med Mol Imaging, 2014, 41 Suppl 1: S17−25. DOI: 10.1007/s00259-013-2542-4.

[53] Van den Wyngaert T, Elvas F, De Schepper S, et al.  SPECT/CT: standing on the shoulders of giants, it is time to reach for the sky![J]. J Nucl Med, 2020, 61(9): 1284-1291.   doi: 10.2967/jnumed.119.236943
[54] Hong Z, Mao X, You J, et al.  An evaluation of HER2-positive ovarian carcinoma xenografts: from a novel therapy to a noninvasive monitoring method[J]. Cancer Biother Radiopharm, 2018, 33(9): 411-419.   doi: 10.1089/cbr.2018.2516
[55] Riad A, Gitto SB, Lee H, et al.  PARP theranostic auger emitters are cytotoxic in BRCA mutant ovarian cancer and viable tumors from ovarian cancer patients enable ex-vivo screening of tumor response[J]. Molecules, 2020, 25(24): 6029-.   doi: 10.3390/molecules25246029
[56] Chang MC, Chiang PF, Kuo YJ, et al.  Develop companion radiopharmaceutical YKL40 antibodies as potential theranostic agents for epithelial ovarian cancer[J]. Biomed Pharmacother, 2022, 155: 113668-.   doi: 10.1016/j.biopha.2022.113668
[57] Lindner T, Altmann A, Krämer S, et al.  Design and development of 99mTc-labeled FAPI tracers for SPECT imaging and 188Re therapy[J]. J Nucl Med, 2020, 61(10): 1507-1513.   doi: 10.2967/jnumed.119.239731