[1] Lara DA, Lopez KN.  Public health research in congenital heart disease[J]. Congenit Heart Dis, 2014, 9(6): 549-558.   doi: 10.1111/chd.12235
[2] Kaltman JR, Andropoulos DB, Checchia PA, et al.  Report of the pediatric heart network and national heart, lung, and blood institute working group on the perioperative management of congenital heart disease[J]. Circulation, 2010, 121(25): 2766-2772.   doi: 10.1161/circulationaha.109.913129
[3] Peyvandi S, Latal B, Miller SP, et al.  The neonatal brain in critical congenital heart disease: insights and future directions[J]. Neuroimage, 2019, 185: 776-782.   doi: 10.1016/j.neuroimage.2018.05.045
[4] Moons KGM, Kengne AP, Woodward M, et al.  Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker[J]. Heart, 2012, 98(9): 683-690.   doi: 10.1136/heartjnl-2011-301246
[5] Toll DB, Janssen KJM, Vergouwe Y, et al.  Validation, updating and impact of clinical prediction rules: a review[J]. J Clin Epidemiol, 2008, 61(11): 1085-1094.   doi: 10.1016/j.jclinepi.2008.04.008
[6] 邱洁净, 唐雯桢, 莫新少.  术后肺部并发症风险预测模型的研究进展[J]. 护理研究, 2020, 34(22): 4011-4014.   doi: 10.12102/j.issn.1009-6493.2020.22.013
Qiu JJ, Tang WZ, Mo XS.  Research progress on risk prediction models of postoperative pulmonary complications[J]. Chin Nurs Res, 2020, 34(22): 4011-4014.   doi: 10.12102/j.issn.1009-6493.2020.22.013
[7] 刘璐璐, 杨虹, 邵国良, 等.  基于CT影像组学模型预测原发性肝癌3年生存期的价值[J]. 中华放射学杂志, 2018, 52(9): 681-686.   doi: 10.3760/cma.j.issn.1005-1201.2018.09.007
Liu LL, Yang H, Shao GL, et al.  CT radiomics model for predicting the three-year survival time of primary hepatocellular carcinoma[J]. Chin J Radiol, 2018, 52(9): 681-686.   doi: 10.3760/cma.j.issn.1005-1201.2018.09.007
[8] Jansen MH, Van Zanten SEV, Aliaga ES, et al.  Survival prediction model of children with diffuse intrinsic pontine glioma based on clinical and radiological criteria[J]. Neuro Oncol, 2015, 17(1): 160-166.   doi: 10.1093/neuonc/nou104
[9] Wang GY, Wang BM, Wang Z, et al.  Radiomics signature of brain metastasis: prediction of EGFR mutation status[J]. Eur Radiol, 2021, 31(7): 4538-4547.   doi: 10.1007/s00330-020-07614-x
[10] Mebius MJ, Kooi EMW, Bilardo CM, et al.  Brain injury and neurodevelopmental outcome in congenital heart disease: a systematic review[J]. Pediatrics, 2017, 140(1): e20164055-.   doi: 10.1542/peds.2016-4055
[11] McQuillen PS, Goff DA, Licht DJ.  Effects of congenital heart disease on brain development[J]. Prog Pediatr Cardiol, 2010, 29(2): 79-85.   doi: 10.1016/j.ppedcard.2010.06.011
[12] Williams IA, Tarullo AR, Grieve PG, et al.  Fetal cerebrovascular resistance and neonatal EEG predict 18-month neurodevelopmental outcome in infants with congenital heart disease[J]. Ultrasound Obstet Gynecol, 2012, 40(3): 304-309.   doi: 10.1002/uog.11144
[13] Williams IA, Fifer C, Jaeggi E, et al.  The association of fetal cerebrovascular resistance with early neurodevelopment in single ventricle congenital heart disease[J]. Am Heart J, 2013, 165(4): 544-550.e1.   doi: 10.1016/j.ahj.2012.11.013
[14] 曾施, 周启昌, 周嘉炜, 等.  三维能量多普勒超声检测先天性心脏病胎儿全脑血流灌注的研究[J]. 中华超声影像学杂志, 2015, 24(8): 661-664.   doi: 10.3760/cma.j.issn.1004-4477.2015.08.006
Zeng S, Zhou QC, Zhou JW, et al.  Assessment of global cerebral blood flow perfusion in fetuses with congenital heart diseases by three-dimensional power Doppler ultrasound[J]. Chin J Ultrason, 2015, 24(8): 661-664.   doi: 10.3760/cma.j.issn.1004-4477.2015.08.006
[15] 曾施, 周启昌, 周嘉炜, 等.  三维能量多普勒超声检测先天性心脏病胎儿三大脑动脉区域血流灌注的研究[J]. 中华超声影像学杂志, 2015, 24(7): 566-570.   doi: 10.3760/cma.j.issn.1004-4477.2015.07.004
Zeng S, Zhou QC, Zhou JW, et al.  Assessment of regional cerebral blood flow perfusion in fetuses with congenital heart diseases by three-dimensional power Doppler ultrasound[J]. Chin J Ultrason, 2015, 24(7): 566-570.   doi: 10.3760/cma.j.issn.1004-4477.2015.07.004
[16] Abeysekera JB, Gyenes DL, Atallah J, et al.  Fetal umbilical arterial pulsatility correlates with 2-year growth and neurodevelopmental outcomes in congenital heart disease[J]. Can J Cardiol, 2021, 37(3): 425-432.   doi: 10.1016/j.cjca.2020.06.024
[17] Williams IA, Fifer WP, Andrews H.  Fetal growth and neurodevelopmental outcome in congenital heart disease[J]. Pediatr Cardiol, 2015, 36(6): 1135-1144.   doi: 10.1007/s00246-015-1132-6
[18] Peyvandi S, Chau V, Guo T, et al.  Neonatal brain injury and timing of neurodevelopmental assessment in patients with congenital heart disease[J]. J Am Coll Cardiol, 2018, 71(18): 1986-1996.   doi: 10.1016/j.jacc.2018.02.068
[19] Claessens NHP, Algra SO, Ouwehand TL, et al.  Perioperative neonatal brain injury is associated with worse school-age neurodevelopment in children with critical congenital heart disease[J]. Dev Med Child Neurol, 2018, 60(10): 1052-1058.   doi: 10.1111/dmcn.13747
[20] Calderon J, Stopp C, Wypij D, et al.  Early-term birth in single-ventricle congenital heart disease after the fontan procedure: neurodevelopmental and psychiatric outcomes[J]. J Pediatr, 2016, 179: 96-103.   doi: 10.1016/j.jpeds.2016.08.084
[21] Rollins CK, Asaro LA, Akhondi-Asl A, et al.  White matter volume predicts language development in congenital heart disease[J]. J Pediatr, 2017, 181: 42-48.e2.   doi: 10.1016/j.jpeds.2016.09.070
[22]

Ma SY, Li YP, Liu YT, et al. Changes in cortical thickness are associated with cognitive ability in postoperative school-aged children with tetralogy of fallot[J/OL]. Front Neurol, 2020, 11: 691[2021-05-31]. https://www.frontiersin.org/articles/10.3389/fneur.2020.00691/full. DOI: 10.3389/fneur.2020.00691.

[23] Latal B, Patel P, Liamlahi R, et al.  Hippocampal volume reduction is associated with intellectual functions in adolescents with congenital heart disease[J]. Pediatr Res, 2016, 80(4): 531-537.   doi: 10.1038/pr.2016.122
[24] Von Rhein M, Buchmann A, Hagmann C, et al.  Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease[J]. Brain, 2014, 137(1): 268-276.   doi: 10.1093/brain/awt322
[25] Knirsch W, Mayer KN, Scheer I, et al.  Structural cerebral abnormalities and neurodevelopmental status in single ventricle congenital heart disease before Fontan procedure[J]. Eur J Cardiothorac Surg, 2017, 51(4): 740-746.   doi: 10.1093/ejcts/ezw399
[26] Heye KN, Knirsch W, Latal B, et al.  Reduction of brain volumes after neonatal cardiopulmonary bypass surgery in single-ventricle congenital heart disease before Fontan completion[J]. Pediatr Res, 2018, 83(1): 63-70.   doi: 10.1038/pr.2017.203
[27] Hiraiwa A, Kawasaki Y, Ibuki K, et al.  Brain development of children with single ventricle physiology or transposition of the great arteries: a longitudinal observation study[J]. Semin Thorac Cardiovasc Surg, 2020, 32(4): 936-944.   doi: 10.1053/j.semtcvs.2019.06.013
[28] 杨铭雯, 刘玉婷, 杨明.  多模态MRI对先天性心脏病患儿脑发育的评估及其研究进展[J]. 国际医学放射学杂志, 2021, 44(1): 35-38.   doi: 10.19300/j.2021.Z18117
Yang MW, Liu YT, Yang M.  Progress of multimodal MRI in evaluation of brain development in children with congenital heart disease[J]. Int J Med Radiol, 2021, 44(1): 35-38.   doi: 10.19300/j.2021.Z18117
[29] Ehrler M, Latal B, Kretschmar O, et al.  Altered frontal white matter microstructure is associated with working memory impairments in adolescents with congenital heart disease: a diffusion tensor imaging study[J]. Neuroimage Clin, 2020, 25: 102123-.   doi: 10.1016/j.nicl.2019.102123
[30] Rollins CK, Watson CG, Asaro LA, et al.  White matter microstructure and cognition in adolescents with congenital heart disease[J]. J Pediatr, 2014, 165(5): 936-944.e1−2.   doi: 10.1016/j.jpeds.2014.07.028