[1] Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971, 285(21): 1182-1186.
[2] Mazeron R, Bourhis J, Deutsch E. Angiogenesis: all a radiation oncologist should know. Cancer Radiother, 2008, 12(1): 50-60.
[3] 张国鹏, 兰晓莉, 何勇, 等. 99Tcm-亚锡葡庚糖酸钠结合GGC序列监测基因治疗的实验研究.中华核医学杂志, 2011, 31(2): 128-133.
[4]

Wang P, Zhen H, Zhang J, et al. Survivin promotes glioma angiogenesis through vascular endothelial growth factor and basic fibroblast growth factor in vitro and in vivo. Mol Carcinog, 2011[2012-01-10]. http://onlinelibrary.wiley.com/doi/10.1002/mc.20829/abstract;jsessionid=719EB7C1790AF3BC30D13D2BF55D8814.d03t02. [published online ahead of print July 14, 2011].

[5] 赵新明, 戴萌, 刘亚丽, 等. 99Tcm-survivin mRNA反义肽核酸制备及荷瘤裸鼠基因显像研究.中华核医学杂志, 2011, 31(5): 339-343.
[6] Li JL, Harris AL. Crosstalk of VEGF and Notch pathways in tumour angiogenesis: therapeutic implications. Front Biosci, 2009, 14: 3094-3110.
[7] 杨明福, 李前伟.肿瘤血管内皮生长因子受体核素显像研究现状.国际放射医学核医学杂志, 2010, 34(1): 19-22.
[8] Blankenberg FG, Backer MV, Levashova Z, et al. In vivo tumor angiogenesis imaging with site-specific labeled 99Tcm-HYNIC-VEGF. Eur J Nucl Med Mol Imaging, 2006, 33(7): 841-848.
[9] 黄定德, 李前伟, 刘广元, 等. 99Tcm标记多肽VEGF125-136及其生物学分布.第三军医大学学报, 2007, 29(17): 1660-1662.
[10] Backer MV, Levashova Z, Patel V, et al. Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med, 2007, 13(4): 504-509.
[11] von Wallbrunn A, Höltke C, Zühlsdorf M, et al. In vivo imaging of integrin ανβ3 expression using fluorescence-mediated tomography. Eur J Nucl Med Mol Imaging, 2007, 34(5): 745-754.
[12] Liu S. Radiolaboled muhimeric cyclic RGD peptides as integrin ανβ3 targeted radiotracers for tumor imaging. Mol Pharm, 2006, 3(5): 472-487.
[13] 余子璘, 贾兵, 刘昭飞, 等. 99Tcm标记RGD环肽四聚体在神经胶质瘤裸鼠模型中的显像研究.中华核医学杂志, 2009, 29(2): 103-108.
[14] 李玲, 胡漫, 于金明, 等.非小细胞肺癌99Tcm-HL91 SPECT乏氧显像中HL91摄取程度与乏氧诱导因子1α和血管内皮生长因子表达的关系.中华肿瘤杂志, 2009, 31(9): 669-673.
[15] Bourgeois M, Rajerison H, Guerard F, et al. Contribution of[64Cu]-ATSM PET in molecular imaging of tumour hypoxia compared to classical[18F]-MISO—a selected review. Nucl Med Rev Cent East Eur, 2011, 14(2): 90-95.
[16] Grönroos T, Bentzen L, Marjamaki P, et al. Comparison of the biodistribution of two hypoxia markers[18F]FETNIM and[18F] FMISO in an experimental mammary carcinoma. Eur J Nucl Med Mol Imaging, 2004, 31(4): 513-520.
[17] Wang JH, Min PQ, Wang PJ, et al. Dynamic CT evaluation of tumor vascularity in renal cell carcinoma. AJR Am J Roentgenol, 2006, 186(5): 1423-1430.
[18] Sipkins DA, Cheresh DA, Kazemi MR, et al. Detection of tumor angiogenesis in vivo by ανβ3-targeted magnetic resonance imaging. Nat Med, 1998, 4(5): 623-626.
[19] Gossmann A, Helbich TH, Kuriyama N, et al. Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging, 2002, 15(3):233-240.
[20] Palmowski M, Huppert J, Ladewig G, et al. Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol Cancer Ther, 2008, 7(1): 101-109.
[21] Peng L, Liu R, Andrei M, et al. In vivo optical imaging of human lymphoma xenograft using a library-derived peptidomimetic against α4β1 integrin. Mol Cancer Ther, 2008, 7(2): 432-437.