[1] Shao LJ, Luo Y, Zhou DH.  Hematopoietic stem cell injury induced by ionizing radiation[J]. Antioxid Redox Signal, 2014, 20(9): 1447-1462.   doi: 10.1089/ars.2013.5635
[2] Forristal CE, Winkler IG, Nowlan B, et al.  Pharmacologic stabilization of HIF-1α increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation[J]. Blood, 2013, 121(5): 759-769.   doi: 10.1182/blood-2012-02-408419
[3] Morikawa T, Takubo K.  Hypoxia regulates the hematopoietic stem cell niche[J]. Pflugers Arch, 2016, 468(1): 13-22.   doi: 10.1007/s00424-015-1743-z
[4] Takubo K, Goda N, Yamada W, et al.  Regulation of the HIF-1α level is essential for hematopoietic stem cells[J]. Cell Stem Cell, 2010, 7(3): 391-402.   doi: 10.1016/j.stem.2010.06.020
[5] Vukovic M, Sepulveda C, Subramani C, et al.  Adult hematopoietic stem cells lacking Hif-1α self-renew normally[J]. Blood, 2016, 127(23): 2841-2846.   doi: 10.1182/blood-2015-10-677138
[6] Speth JM, Hoggatt J, Singh P, et al.  Pharmacologic increase in HIF1α enhances hematopoietic stem and progenitor homing and engraftment[J]. Blood, 2014, 123(2): 203-207.   doi: 10.1182/blood-2013-07-516336
[7] Ratajczak MZ, Suszynska M.  Emerging strategies to enhance homing and engraftment of hematopoietic stem cells[J]. Stem Cell Rev Rep, 2016, 12(1): 121-128.   doi: 10.1007/s12015-015-9625-5
[8] Taniguchi CM, Miao YR, Diep AN, et al.  PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2[J]. Sci Transl Med, 2014, 6(236): 236ra64-.   doi: 10.1126/scitranslmed.3008523
[9] Zhang P, Du JC, Zhao HN, et al.  Radioprotective effects of roxadustat (FG-4592) in haematopoietic system[J]. J Cell Mol Med, 2019, 23(1): 349-356.   doi: 10.1111/jcmm.13937
[10] McDonough MA, McNeill LA, Tilliet M, et al.  Selective inhibition of factor inhibiting hypoxia-inducible factor[J]. J Am Chem Soc, 2005, 127(21): 7680-7681.   doi: 10.1021/ja050841b
[11] 孟媛媛, 徐文清.  N-草酰化-D-苯丙氨酸对小鼠的辐射防护作用[J]. 辐射研究与辐射工艺学报, 2019, 37(3): 030302-.   doi: 10.11889/j.1000-3436.2019.rrj.37.030302
Meng YY, Xu WQ.  Protective effect of N-oxalyl-D-phenylalanine on radiation injury in mice[J]. J Radiat Res Radiat Process, 2019, 37(3): 030302-.   doi: 10.11889/j.1000-3436.2019.rrj.37.030302
[12] Semenza GL.  Involvement of hypoxia-inducible factor 1 in human cancer[J]. Intern Med, 2002, 41(2): 79-83.   doi: 10.2169/internalmedicine.41.79
[13] Chan MC, Holt-Martyn JP, Schofield CJ, et al.  Pharmacological targeting of the HIF hydroxylases — a new field in medicine development[J]. Mol Aspects Med, 2016, 47/48: 54-75.   doi: 10.1016/j.mam.2016.01.001
[14]

Xue XL, Han XD, Li Y, et al. Astaxanthin attenuates total body irradiation-induced hematopoietic system injury in mice via inhibition of oxidative stress and apoptosis[J/OL]. Stem Cell Res Ther, 2017, 8(1): 7[2021-03-22]. DOI: 10.1186/s13287-016-0464-3.

[15]

Han XD, Xue XL, Zhao Y, et al. Rutin-enriched extract from Coriandrum sativum L. ameliorates ionizing radiation-induced hematopoietic injury[J/OL]. Int J Mol Sci, 2017, 18(5): 942[2021-03-22]. https://www.mdpi.com/1422-0067/18/5/942. DOI: 10.3390/ijms18050942.

[16] Wang JW, Sun Q, Morita Y, et al.  A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage[J]. Cell, 2012, 148(5): 1001-1014.   doi: 10.1016/j.cell.2012.01.040
[17]

Scialò F, Fernández-Ayala DJ, Sanz A. Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease[J/OL]. Front Physiol, 2017, 8: 428[2021-03-22]. https://www.frontiersin.org/articles/10.3389/fphys.2017.00428/full. DOI: 10.3389/fphys.2017.00428.

[18] Sanz A, Pamplona R, Barja G.  Is the mitochondrial free radical theory of aging intact?[J]. Antioxid Redox Signal, 2006, 8(3/4): 582-599.   doi: 10.1089/ars.2006.8.582
[19]

Meng YY, Yang FJ, Long W, et al. Radioprotective activity and preliminary mechanisms of N-oxalyl-D-phenylalanine (NOFD) in vitro[J/OL]. Int J Mol Sci, 2019, 20(1): 37[2021-03-22]. https://www.mdpi.com/1422-0067/20/1/37. DOI: 10.3390/ijms20010037.

[20] Peslak SA, Wenger J, Bemis JC, et al.  EPO-mediated expansion of late-stage erythroid progenitors in the bone marrow initiates recovery from sublethal radiation stress[J]. Blood, 2012, 120(12): 2501-2511.   doi: 10.1182/blood-2011-11-394304
[21] Galal SM, Abdel-Rafei MK, Hasan HF.  Cholinergic and cytoprotective signaling cascades mediate the mitigative effect of erythropoietin on acute radiation syndrome[J]. Can J Physiol Pharmacol, 2018, 96(5): 442-458.   doi: 10.1139/cjpp-2017-0578
[22] Ugurluer G, Cebi A, Mert H, et al.  Neuroprotective effects of erythropoietin against oxidant injury following brain irradiation: an experimental study[J]. Arch Med Sci, 2016, 12(6): 1348-1353.   doi: 10.5114/aoms.2016.58622
[23] Chen Q, Liu Y, Jeong HW, et al.  Apelin+ endothelial niche cells control hematopoiesis and mediate vascular regeneration after myeloablative injury[J]. Cell Stem Cell, 2019, 25(6): 768-783.   doi: 10.1016/j.stem.2019.10.006
[24] Kiriakidis S, Henze AT, Kruszynska-Ziaja I, et al.  Factor-inhibiting HIF-1 (FIH-1) is required for human vascular endothelial cell survival[J]. FASEB J, 2015, 29(7): 2814-2827.   doi: 10.1096/fj.14-252379
[25]

Kim A, Shim S, Kim MJ, et al. Mesenchymal stem cell-mediated Notch2 activation overcomes radiation-induced injury of the hematopoietic system[J/OL]. Sci Rep, 2018, 8(1): 9277[2021-03-22]. DOI: 10.1038/s41598-018-27666-w.

[26] Denkinger MD, Leins H, Schirmbeck R, et al.  HSC aging and senescent immune remodeling[J]. Trends Immunol, 2015, 36(12): 815-824.   doi: 10.1016/j.it.2015.10.008
[27]

Janghorban M, Xin L, Rosen JM, et al. Notch signaling as a regulator of the tumor immune response: to target or not to target?[J/OL]. Front Immunol, 2018, 9: 1649[2021-03-22]. DOI: 10.3389/fimmu.2018.01649.

[28] Semenza GL.  Regulation of oxygen homeostasis by hypoxia-inducible factor 1[J]. Physiology (Bethesda), 2009, 24: 97-106.   doi: 10.1152/physiol.00045.2008
[29] Gerić M, Gajski G, Garaj-Vrhovac V.  γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology[J]. Ecotoxicol Environ Saf, 2014, 105: 13-21.   doi: 10.1016/j.ecoenv.2014.03.035
[30] Chen CX, Hao XH, Geng ZR, et al.  ITRAQ-based quantitative proteomic analysis of MG63 in response to HIF-1α inducers[J]. J Proteomics, 2020, 211: 103558-.   doi: 10.1016/j.jprot.2019.103558