[1] 白春礼.纳米科技及其发展前景.科学通报, 2001, 46(2): 89-92.  doi: 10.3321/j.issn:0023-074X.2001.02.001
[2] Andreu EJ, Martin de Llano JJ, Moreno I, et al. A rapid procedure suitable to assess quantitatively the endocytosis of colloidal gold and its conjugates in cultured cells. J Histochem Cytochem, 1998, 46(10): 1199-1201.  doi: 10.1177/002215549804601013
[3] Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev, 2012, 41(6): 2256-2282.  doi: 10.1039/C1CS15166E
[4] Griset AP, Walpole J, Liu R, et al. Expansile nanoparticles: synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system. J Am Chem Soc, 2009, 131(7): 2469-2471.  doi: 10.1021/ja807416t
[5] Smith AM, Duan H, Mohs AM, et al. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev, 2008, 60(11): 1226-1240.  doi: 10.1016/j.addr.2008.03.015
[6] Mohamed MB, AbouZeid KM, Abdelsayed V, et al. Growth mechanism of anisotropic gold nanocrystals via microwave synthesis: formation of dioleamide by gold nanocatalysis. ACS Nano, 2010, 4(5): 2766-2772.  doi: 10.1021/nn9016179
[7] Hu M, Chen J, Li ZY, et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev, 2006, 35(11): 1084-1094.  doi: 10.1039/b517615h
[8] Anker JN, Hall WP, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater, 2008, 7(6): 442-453.  doi: 10.1038/nmat2162
[9] Sokolov K, Follen M, Aaron J, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res, 2003, 63(9): 1999-2004.
[10] Zhang XD, Wu D, Shen X, et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials, 2012, 33(18): 4628-4638.  doi: 10.1016/j.biomaterials.2012.03.020
[11] Pissuwan D, Valenzuela SM, Cortie MB. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol, 2006, 24(2): 62-67.  doi: 10.1016/j.tibtech.2005.12.004
[12] Zheng J, Zhang C, Dickson RM. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett, 2004, 93(7): 1-4.
[13] Huang X, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc, 2006, 128(6): 2115-2120.  doi: 10.1021/ja057254a
[14] Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol, 2004, 49(18): N309-315.  doi: 10.1088/0031-9155/49/18/N03
[15] Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc, 1951, 11: 55-75.  doi: 10.1039/df9511100055
[16] Mei BC, Susumu K, Medintz IL, et al. Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media. Nat Protoc, 2009, 4(3): 412-423.  doi: 10.1038/nprot.2008.243
[17] Fernandes R, Li M, Dujardin E, et al. Ligand-mediated self-assembly of polymer-enveloped gold nanoparticle chains and networks. Chem Commun, 2010, 46(40): 7602-7604.  doi: 10.1039/c0cc03033c
[18] Brewer SH, Glomm WR, Johnson MC, et al. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir, 2005, 21(20): 9303-9307.  doi: 10.1021/la050588t
[19] Gao J, Huang X, Liu H, et al. Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. Langmuir, 2012, 28(9): 4464-4471.  doi: 10.1021/la204289k
[20] Zhang XD, Wu HY, Wu D, et al. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomedicine, 2010, 5: 771-781.
[21] Zhang XD, Wu D, Shen X, et al. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomedicine, 2011, 6: 2071-2081.