[1] Ziadi MC, Dekemp RA, Williams KA, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia[J]. J Am Coll Cardiol, 2011, 58 (7):740-748. DOI:10.1016/j.jacc.2011.01.065.
[2] Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve[J]. Circulation, 2011, 124 (20):2215-2224. DOI:10.1161/CIRCULA-TIONAHA.111.050427.
[3] Taqueti VR, Everett BM, Murthy VL, et al. Interaction of impaired coronary flow reserve and cardiomyocyte injury on adverse cardiovascular outcomes in patients without overt coronary artery disease[J]. Circulation, 2015, 131 (6):528-535. DOI:10.1161/CIRCULATIONAHA.114.009716.
[4] Dean J, Cruz SD, Mehta PK, et al. Coronary microvascular dysfunction:sex-specific risk, diagnosis, and therapy[J]. Nat Rev Cardiol, 2015, 12 (7):406-414. DOI:10.1038/nrcardio.2015.72.
[5] Pries AR, Reglin B. Coronary microcirculatory pathophysiology:can we afford it to remain a black box?[J]. Eur Heart J, 2017, 38 (7):478-488. DOI:10.1093/eurheartj/ehv760.
[6] Cannon RO, Epstein SE. "Microvascular angina" as a cause of chest pain with angiographically normal coronary arteries[J]. Am J Cardiol, 1988, 61 (15):1338-1343.  doi: 10.1016/0002-9149(88)91180-0
[7] Crea F, Camici PG, Bairey MCN. Coronary microvascular dysfunction:an update[J]. Eur Heart J, 2014, 35 (17):1101-1111. DOI:10.1093/eurheartj/eht513.
[8]

Shome JS, Perera D, Plein S, et al. Current perspectives in coronary microvascular dysfunction[J/OL]. Microcirculation, 2017, 24 (1): e12340[2018-01-14]. https://doi.org/10.1111/micc.12340. DOI:10.1111/micc.12340.

[9] Löffler AI, Bourque JM. Coronary Microvascular Dysfunction, Microvascular Angina, and Management[J]. Curr Cardiol Rep, 2016, 18 (1):1. DOI:10.1007/s11886-015-0682-9.
[10] Saraste A, Kajander S, Han C, et al. PET:Is myocardial flow quantification a clinical reality?[J]. J Nucl Cardiol, 2012, 19 (5):1044-1059. DOI:10.1007/s12350-012-9588-8.
[11] Danad I, Uusitalo V, Kero T, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease:cutoff values and diagnostic accuracy of quantitative[(15)O]H2O PET imaging[J]. J Am Coll Cardiol, 2014, 64 (14):1464-1475. DOI:10.1016/j.jacc.2014.05.069.
[12] Camici PG, d'Amati G, Rimoldi O. Coronary microvascular dysfunction:mechanisms and functional assessment[J]. Nat Rev Cardiol, 2015, 12 (1):48-62. DOI:10.1038/nrcardio.2014.160.
[13]

Sciagrà R. Quantitative cardiac positron emission tomography: the time is coming![J/OL]. Scientifica (Cairo), 2012, 2012: e948653[2018-01-14]. http://dx.doi.org/10.6064/2012/948653. DOI:10.6064/2012/948653.

[14] 孙茉茉, 李剑明. PET心肌灌注显像及其定量分析的研究进展[J].国际放射医学核医学杂志, 2017, 41 (6):423-429. DOI:10.3760/cma.j.issn.1673-4114.2017.06.008.
Sun MM, LI JM.The research progress of myocardial perfusion and its quantitative analysis with PET[J]. International J Radiat Med Nucl Med, 2017, 41 (6):423-429. DOI:10.3760/cma.j.issn.1673-4114.2017.06.008.
[15] Nakazato R, Heo R, Leipsic J, et al. CFR and FFR assessment with PET and CTA:strengths and limitations[J]. Curr Cardiol Rep, 2014, 16 (5):484. DOI:10.1007/s11886-014-0484-5.
[16] Al BF, Aljizeeri A, Almasoudi F, et al. Assessment of myocardial blood flow and coronary flow reserve with positron emission tomography in ischemic heart disease:current state and future directions[J]. Heart Fail Rev, 2017, 22 (4):441-453. DOI:10.1007/s10741-017-9625-4.
[17] Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making[J]. J Am Coll Cardiol, 2013, 62 (18):1639-1653. DOI:10.1016/j.jacc.2013. 07.076.
[18] von Scholten BJ, Hasbak P, Christensen TE, et al. Cardiac 82Rb PET/CT for fast and non-invasive assessment of microvascular function and structure in asymptomatic patients with type 2 diabetes[J]. Diabetologia, 2016, 59 (2):371-378. DOI:10.1007/s00125-015-3799-x.
[19] Marinescu MA, Löffler AI, Ouellette M, et al. Coronary microvascular dysfunction, microvascular angina, and treatment strategies[J]. JACC Cardiovasc Imaging, 2015, 8 (2):210-220. DOI:10.1016/j.jcmg.2014.12.008.
[20] Driessen RS, Raijmakers PG, Stuijfzand WJ, et al. Myocardial perfusion imaging with PET[J]. Int J Cardiovasc Imaging, 2017, 33 (7):1021-1031.DOI:10.1007/s10554-017-1084-4.
[21] Gulati M, Shaw LJ, Bairey Merz CN, et al. Myocardial ischemia in women:lessons from the NHLBI WISE study[J]. Clin Cardiol, 2012, 35 (3):141-148. DOI:10.1002/clc.21966.
[22] Taqueti VR, Shaw LJ, Cook NR, et al. Excess Cardiovascular Risk in Women Relative to Men Referred for Coronary Angiography Is Associated With Severely Impaired Coronary Flow Reserve, Not Obstructive Disease[J]. Circulation, 2017, 135 (6):566-577. DOI:10.1161/CIRCULATIONAHA.116.023266.
[23] Marroquin OC, Holubkov R, Edmundowicz D, et al. Heterogeneity of microvascular dysfunction in women with chest pain not attributable to coronary artery disease:implications for clinical practice[J]. Am Heart J, 2003, 145 (4):628-635. DOI:10.1067/mhj.2003.95.
[24]

Westergren HU, Michaëlsson E, Blomster JI, et al. Determinants of coronary flow reserve in non-diabetic patients with chest pain without myocardial perfusion defects[J/OL]. PLoS One, 2017, 12 (4): e0176511[2018-01-14]. https://doi.org/10.1371/journal.pone.0176511. DOI:10.1371/journal.pone.0176511.

[25] Di Carli MF, Janisse J, Grunberger G, et al. Role of chronic hyper-glycemia in the pathogenesis of coronary microvascular dysfunction in diabetes[J]. J Am Coll Cardiol, 2003, 41 (8):1387-1393. DOI:org/10.1016/S0735-1097 (03)00166-9.
[26] Murthy VL, Naya M, Foster CR, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus[J]. Circulation, 2012, 126 (15):1858-1868. DOI:10.1161/CIRCULATIONAHA.112.120402.
[27] Murthy VL, Naya M, Taqueti VR, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes[J]. Circulation, 2014, 129 (24):2518-2527. DOI:10.1161/CIRCULATIONAHA.113. 008507.
[28] Taqueti VR, Solomon SD, Shah AM, et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction[J]. Eur Heart J, 2018, 39 (10):840-849. DOI:10.1093/eurheartj/ehx721.
[29] Naya M, Murthy VL, Taqueti VR, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography[J]. J Nucl Med 2014, 55:248-55. 10.2967/jnumed.113.121442.  doi: 10.2967/jnumed.113.121442
[30] Taqueti VR, Hachamovitch R, Murthy VL, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization[J]. Circulation, 2015, 131 (1):19-27. DOI:10.1161/CIRCULATIONAHA.114.011939.
[31] Gupta S, Gupta MM. No reflow phenomenon in percutaneous coronary interventions in ST-segment elevation myocardial infarction[J]. Indian Heart J, 2016, 68 (4):539-551. DOI:10.1016/j.ihj.2016.04.006.
[32] Brosh D, Assali AR, Mager A, et al. Effect of no-reflow during primary percutaneous coronary intervention for acute myocardial infarction on six-month mortality[J]. Am J Cardiol, 2007, 99 (4):442-445. DOI:org/10.1016/j.amjcard.2006.08.054.