[1] Ferlay J, Soerjomataram I, Dikshit R, et al.  Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359-E386.   doi: 10.1002/ijc.29210
[2] Counihan JL, Grossman EA, Nomura DK.  Cancer metabolism: current understanding and therapies[J]. Chem Rev, 2018, 118(14): 6893-6923.   doi: 10.1021/acs.chemrev.7b00775
[3] Delaney G, Jacob S, Featherstone C, et al.  The role of radiotherapy in cancer treatment[J]. Cancer, 2005, 104(6): 1129-1137.   doi: 10.1002/cncr.21324
[4] Peukert D, Kempson I, Douglass M, et al.  Metallic nanoparticle radiosensitisation of ion radiotherapy: a review[J]. Phys Med, 2018, 47: 121-128.   doi: 10.1016/j.ejmp.2018.03.004
[5] Kunz-Schughart LA, Dubrovska A, Peitzsch C, et al.  Nanoparticles for radiooncology: mission, vision, challenges[J]. Biomaterials, 2017, 120: 155-184.   doi: 10.1016/j.biomaterials.2016.12.010
[6] Xu JT, Han W, Cheng ZY, et al.  Bioresponsive and near infrared photon co-enhanced cancer theranostic based on upconversion nanocapsules[J]. Chem Sci, 2018, 9(12): 3233-3247.   doi: 10.1039/c7sc05414a
[7] Liu JN, Bu WB, Shi JL.  Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia[J]. Chem Rev, 2017, 117(9): 6160-6224.   doi: 10.1021/acs.chemrev.6b00525
[8] Abdollahi BB, Malekzadeh R, Azar FP, et al.  Main approaches to enhance radiosensitization in cancer cells by nanoparticles: a systematic review[J]. Adv Pharm Bull, 2021, 11(2): 212-223.   doi: 10.34172/apb.2021.025
[9] 侯小雪, 黄帆, 杨丽军, 等.  高分子纳米材料用于肿瘤放疗增敏的研究进展[J]. 国际放射医学核医学杂志, 2020, 44(6): 381-385.   doi: 10.3760/cma.j.cn121381-201906003-00039
Hou XX, Huang F, Yang LJ, et al.  Research progress on polymer nanomaterials for tumor radiotherapy[J]. Int J Radiat Med Nucl Med, 2020, 44(6): 381-385.   doi: 10.3760/cma.j.cn121381-201906003-00039
[10] 常静林, 张玉民, 董辉.  金纳米粒子在肿瘤放疗中的研究进展[J]. 国际放射医学核医学杂志, 2018, 42(3): 261-264.   doi: 10.3760/cma.j.issn.1673-4114.2018.03.012
Chang JL, Zhang YM, Dong H.  Advances in the application of gold nanoparticles in tumor radiotherapy[J]. Int J Radiat Med Nucl Med, 2018, 42(3): 261-264.   doi: 10.3760/cma.j.issn.1673-4114.2018.03.012
[11] Hua SY, He J, Zhang FP, et al.  Multistage-responsive clustered nanosystem to improve tumor accumulation and penetration for photothermal/enhanced radiation synergistic therapy[J]. Biomaterials, 2021, 268: 120590-.   doi: 10.1016/j.biomaterials.2020.120590
[12] Xie JN, Gong LJ, Zhu S, et al.  Emerging strategies of nanomaterial-mediated tumor radiosensitization[J]. Adv Mater, 2019, 31(3): 1802244-.   doi: 10.1002/adma.201802244
[13]

Howard D, Sebastian S, Van-Chanh Le Q, et al. Chemical mechanisms of nanoparticle radiosensitization and radioprotection: a review of structure-function relationships influencing reactive oxygen species[J/OL]. Int J Mol Sci, 2020, 21(2): 579[2021-09-17]. https://www.mdpi.com/1422-0067/21/2/579. DOI: 10.3390/ijms21020579.

[14] Ma NN, Liu PD, He NY, et al.  Action of gold nanospikes-based nanoradiosensitizers: cellular internalization, radiotherapy, and autophagy[J]. ACS Appl Mater Interfaces, 2017, 9(37): 31526-31542.   doi: 10.1021/acsami.7b09599
[15] Liu HM, Cheng R, Dong XH, et al.  BiO2–x nanosheets as radiosensitizers with catalase-like activity for hypoxia alleviation and enhancement of the radiotherapy of tumors[J]. Inorg Chem, 2020, 59(6): 3482-3493.   doi: 10.1021/acs.inorgchem.9b03280
[16] Fu WH, Zhang X, Mei LQ, et al.  Stimuli-responsive small-on-large nanoradiosensitizer for enhanced tumor penetration and radiotherapy sensitization[J]. ACS Nano, 2020, 14(8): 10001-10017.   doi: 10.1021/acsnano.0c03094
[17] Jia TT, Yang G, Mo SJ, et al.  Atomically precise gold-levonorgestrel nanocluster as a radiosensitizer for enhanced cancer therapy[J]. ACS Nano, 2019, 13(7): 8320-8328.   doi: 10.1021/acsnano.9b03767
[18] Zhang XD, Chen XK, Jiang YW, et al.  Glutathione-depleting gold nanoclusters for enhanced cancer radiotherapy through synergistic external and internal regulations[J]. ACS Appl Mater Interfaces, 2018, 10(13): 10601-10606.   doi: 10.1021/acsami.8b00207
[19] Jiang YW, Gao G, Jia HR, et al.  Palladium nanosheets as safe radiosensitizers for radiotherapy[J]. Langmuir, 2020, 36(39): 11637-11644.   doi: 10.1021/acs.langmuir.0c02316
[20] Higgins MCM, Clifford DM, Rojas JV.  Au@TiO2 nanocomposites synthesized by X-ray radiolysis as potential radiosensitizers[J]. Appl Surf Sci, 2018, 427: 702-710.   doi: 10.1016/j.apsusc.2017.08.094
[21] Townley HE, Kim J, Dobson PJ.  In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles[J]. Nanoscale, 2012, 4(16): 5043-5050.   doi: 10.1039/c2nr30769c
[22] Bakhshizadeh M, Mohajeri SA, Esmaily H, et al.  Utilizing photosensitizing and radiosensitizing properties of TiO2-based mitoxantrone imprinted nanopolymer in fibrosarcoma and melanoma cells[J]. Photodiagn Photodyn Ther, 2019, 25: 472-479.   doi: 10.1016/j.pdpdt.2019.02.006
[23] Higgins MCM, Rojas JV.  X-ray radiation enhancement of gold- TiO2 nanocomposites[J]. Appl Surf Sci, 2019, 480: 1147-1155.   doi: 10.1016/j.apsusc.2019.02.234
[24] Sayed HM, Said MM, Morcos NYS, et al.  Antitumor and radiosensitizing effects of zinc oxide-caffeic acid nanoparticles against solid ehrlich carcinoma in female mice[J]. Integr Cancer Ther, 2021, 20: 15347354211021920-.   doi: 10.1177/15347354211021920
[25] Arab-Bafrani Z, Zabihi E, Jafari SM, et al.  Enhanced radiotherapy efficacy of breast cancer multi cellular tumor spheroids through in-situ fabricated chitosan-zinc oxide bio-nanocomposites as radio-sensitizing agents[J]. Int J Pharm, 2021, 605: 120828-.   doi: 10.1016/j.ijpharm.2021.120828
[26]

Meyer TJ, Scherzad A, Moratin H, et al. The radiosensitizing effect of zinc oxide nanoparticles in sub-cytotoxic dosing is associated with oxidative stress in vitro[J/OL]. Materials, 2019, 12(24): 4062[2021-09-17]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947246. DOI: 10.3390/ma12244062.

[27] Mishra PK, Mishra H, Ekielski A, et al.  Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications[J]. Drug Discov Today, 2017, 22(12): 1825-1834.   doi: 10.1016/j.drudis.2017.08.006
[28] Yang Y, Chen M, Wang BZ, et al.  NIR-Ⅱ driven plasmon-enhanced catalysis for a timely supply of oxygen to overcome hypoxia-induced radiotherapy tolerance[J]. Angew Chem Int Ed, 2019, 58(42): 15069-15075.   doi: 10.1002/anie.201906758
[29] Lv B, Zhang HL, Zheng XP, et al.  Structure-oriented catalytic radiosensitization for cancer radiotherapy[J]. Nano Today, 2020, 35: 100988-.   doi: 10.1016/j.nantod.2020.100988
[30] Zhou RY, Liu XX, Wu YZ, et al.  Suppressing the radiation-induced corrosion of bismuth nanoparticles for enhanced synergistic cancer radiophototherapy[J]. ACS Nano, 2020, 14(10): 13016-13029.   doi: 10.1021/acsnano.0c04375
[31] Hauser AK, Mitov MI, Daley EF, et al.  Targeted iron oxide nanoparticles for the enhancement of radiation therapy[J]. Biomaterials, 2016, 105: 127-135.   doi: 10.1016/j.biomaterials.2016.07.032
[32] Lv SX, Long W, Chen JC, et al.  Dual pH-triggered catalytic selective Mn clusters for cancer radiosensitization and radioprotection[J]. Nanoscale, 2020, 12(2): 548-557.   doi: 10.1039/c9nr08192e
[33] Wang X, Zhang CY, Du JF, et al.  Enhanced generation of non-oxygen dependent free radicals by schottky-type heterostructures of Au–Bi2S3 nanoparticles via X-ray-induced catalytic reaction for radiosensitization[J]. ACS Nano, 2019, 13(5): 5947-5958.   doi: 10.1021/acsnano.9b01818
[34] Kempson I.  Mechanisms of nanoparticle radiosensitization[J]. WIREs Nanomed Nanobiotechnol, 2021, 13(1): e1656-.   doi: 10.1002/wnan.1656