[1]

Zhang L, Cao F, Zhang GY, et al. Trends in and predictions of colorectal cancer incidence and mortality in China from 1990 to 2025[J/OL]. Front Oncol, 2019, 9: 98[2023-10-08]. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2019.00098/full. DOI: 10.3389/fonc.2019.00098.

[2] Dekker E, Tanis PJ, Vleugels JLA, et al.  Colorectal cancer[J]. Lancet, 2019, 394(10207): 1467-1480.   doi: 10.1016/S0140-6736(19)32319-0
[3] Siegel RL, Miller KD, Goding Sauer A, et al.  Colorectal cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(3): 145-164.   doi: 10.3322/caac.21601
[4]

Diagnosis And Treatment Guidelines For Colorectal Cancer Working Group CSOCOC. Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for colorectal cancer 2018 (English version)[J/OL]. Chin J Cancer Res, 2019, 31(1): 117−134[2023-10-08]. DOI: 10.21147/j.issn.1000-9604.2019.01.07.

[5] Patra Bhattacharya D, Canzler S, Kehr S, et al.  Phylogenetic distribution of plant snoRNA families[J]. BMC Genom, 2016, 17(1): 969-.   doi: 10.1186/s12864-016-3301-2
[6] Williams GT, Farzaneh F.  Are snoRNAs and snoRNA host genes new players in cancer?[J]. Nat Rev Cancer, 2012, 12(2): 84-88.   doi: 10.1038/nrc3195
[7]

Yoshida K, Toden S, Weng WH, et al. SNORA21−an oncogenic small nucleolar RNA, with a prognostic biomarker potential in human colorectal cancer[J/OL]. EBioMedicine, 2017, 22: 68−77[2023-10-08]. https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(17)30282-7/fulltext. DOI: 10.1016/j.ebiom.2017.07.009.

[8] Okugawa Y, Toiyama Y, Toden S, et al.  Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in colorectal cancer[J]. Gut, 2017, 66(1): 107-117.   doi: 10.1136/gutjnl-2015-309359
[9]

Zhang ZX, Tao YX, Hua QL, et al. SNORA71A promotes colorectal cancer cell proliferation, migration, and invasion[J/OL]. Biomed Res Int, 2020, 2020: 8284576[2023-10-08]. https://www.hindawi.com/journals/bmri/2020/8284576. DOI: 10.1155/2020/8284576.

[10]

Zhang LW, Ma R, Gao MC, et al. SNORA72 activates the notch1/c-Myc pathway to promote stemness transformation of ovarian cancer cells[J/OL]. Front Cell Dev Biol, 2020, 8: 583087[2023-10-08]. https://www.frontiersin.org/articles/10.3389/fcell.2020.583087/full. DOI: 10.3389/fcell.2020.583087.

[11] Myllykangas S, Böhling T, Knuutila S.  Specificity, selection and significance of gene amplifications in cancer[J]. Semin Cancer Biol, 2007, 17(1): 42-55.   doi: 10.1016/j.semcancer.2006.10.005
[12] 吴颖, 高蔚, 张佑杨, 等.  CCL5对人肺腺癌细胞增殖、凋亡的影响及机制研究[J]. 淮海医药, 2022, 40(6): 565-569.   doi: 10.14126/j.cnki.1008-7044.2022.06.004
Wu Y, Gao W, Zhang YY, et al.  Effects of CCL5 on proliferation, migration and apoptosis of lung cancer A549 cells[J]. J Huaihai Med, 2022, 40(6): 565-569.   doi: 10.14126/j.cnki.1008-7044.2022.06.004
[13]

CNTF protects MIN6 cells against apoptosis induced by Alloxan and IL-1β through downregulation of the AMPK pathway[J]. Cell Signal, 2011, 23(10): 1669-1676. DOI:10.1016/j.cellsig.2011.06.001.

[14]

Zhou M, Wang X, Shi YQ, et al. Deficiency of ITGAM attenuates experimental abdominal aortic aneurysm in mice[J/OL]. J Am Heart Assoc, 2021, 10(7): e019900[2023-10-08]. https://www.ahajournals.org/doi/10.1161/JAHA.120.019900. DOI: 10.1161/JAHA.120.019900.

[15]

Xu ZJ, Wu YF, Fu GH, et al. SAA1 has potential as a prognostic biomarker correlated with cell proliferation, migration, and an indicator for immune infiltration of tumor microenvironment in clear cell renal cell carcinoma[J/OL]. Int J Mol Sci, 2023, 24(8): 7505[2023-10-08]. https://www.mdpi.com/1422-0067/24/8/7505. DOI: 10.3390/ijms24087505.

[16]

Guo W, Cai YL, Liu XM, et al. Single-exosome profiling identifies ITGB3+ and ITGAM+ exosome subpopulations as promising early diagnostic biomarkers and therapeutic targets for colorectal cancer[J/OL]. Research (Wash D C), 2023, 6: 0041[2023-10-08]. https://spj.science.org/doi/10.34133/research.0041. DOI: 10.34133/research.0041.

[17] Chen J, Zhao D, Zhang LY, et al.  Tumor-associated macrophage (TAM)-derived CCL22 induces FAK addiction in esophageal squamous cell carcinoma (ESCC)[J]. Cell Mol Immunol, 2022, 19(9): 1054-1066.   doi: 10.1038/s41423-022-00903-z
[18]

Stepanov GA, Filippova JA, Komissarov AB, et al. Regulatory role of small nucleolar RNAs in human diseases[J/OL]. Biomed Res Int, 2015, 2015: 206849[2023-10-08]. https://www.hindawi.com/journals/bmri/2015/206849. DOI: 10.1155/2015/206849.

[19] Liu YH, Zhao CW, Sun J, et al.  Overexpression of small nucleolar RNA SNORD1C is associated with unfavorable outcome in colorectal cancer[J]. Bioengineered, 2021, 12(1): 8943-8952.   doi: 10.1080/21655979.2021.1990194
[20] Thariat J, Hannoun-Levi JM, Sun Myint A, et al.  Past, present, and future of radiotherapy for the benefit of patients[J]. Nat Rev Clin Oncol, 2013, 10(1): 52-60.   doi: 10.1038/nrclinonc.2012.203
[21] Benson AB, Venook AP, Al-Hawary MM, et al.  NCCN guidelines insights: colon cancer, version 2.2018[J]. J Natl Compr Canc Netw, 2018, 16(4): 359-369.   doi: 10.6004/jnccn.2018.0021
[22]

Han C, Sun LY, Luo XQ, et al. Chromatin-associated orphan snoRNA regulates DNA damage-mediated differentiation via a non-canonical complex[J/OL]. Cell Rep, 2022, 38(13): 110421[2023-10-08]. https://www.sciencedirect.com/science/article/pii/S2211124722001450. DOI: 10.1016/j.celrep.2022.110421.

[23]

Bergstrand S, O'Brien EM, Coucoravas C, et al. Small Cajal body-associated RNA 2 (scaRNA2) regulates DNA repair pathway choice by inhibiting DNA-PK[J/OL]. Nat Commun, 2022, 13(1): 1015[2023-10-08]. https://www.nature.com/articles/s41467-022-28646-5. DOI: 10.1038/s41467-022-28646-5.

[24] Shen LF, Zhou SH, Yu Q.  Predicting response to radiotherapy in tumors with PET/CT: when and how?[J]. Transl Cancer Res, 2020, 9(4): 2972-2981.   doi: 10.21037/tcr.2020.03.16
[25] Zhivotovsky B, Joseph B, Orrenius S.  Tumor radiosensitivity and apoptosis[J]. Exp Cell Res, 1999, 248(1): 10-17.   doi: 10.1006/excr.1999.4452
[26] Siprashvili Z, Webster DE, Johnston D, et al.  The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer[J]. Nat Genet, 2016, 48(1): 53-58.   doi: 10.1038/ng.3452
[27] Fang JY, Richardson BC.  The MAPK signalling pathways and colorectal cancer[J]. Lancet Oncol, 2005, 6(5): 322-327.   doi: 10.1016/S1470-2045(05)70168-6
[28] Schmitt M, Greten FR.  The inflammatory pathogenesis of colorectal cancer[J]. Nat Rev Immunol, 2021, 21(10): 653-667.   doi: 10.1038/s41577-021-00534-x
[29] Hamidi H, Ivaska J.  Every step of the way: integrins in cancer progression and metastasis[J]. Nat Rev Cancer, 2018, 18(9): 533-548.   doi: 10.1038/s41568-018-0038-z